An Innovative Course in Parallel Computing

Yi Pan

Georgia State University

Abstract:

An innovative course in parallel
computing is described in this paper.
Traditional parallel computing courses
use either low-level message passing
interfaces or high level language direc-
tives, but not both, due to limited time.
In our course, we use both high-level
and low-level language constructs. In
this paper, we briefly introduce several
language interface standards and dis-

cuss why we have chosen to use OpenMP
(ahigh-level language interface) and MPI
(alow-level message language interface)
in our parallel computing class. Some of
the drawbacks of using OpenMP in teach-
ing are identified and we show how these
drawbacks are being addressed in the
course. Several programming projects
and a research/survey project given in our
class are also described in detail. Through
careful design of the course, we show that

students can learn many basic concepts
through low-level parallel language
interfaces and parallelize real (long)
scientific codes in high-level parallel
language directives within a short pe-
riod. This would be impossible to ac-
complish if only one language had
been taught in the course.

Index terms: MPI, OpenMP, paral-
lel computing, parallel language,
teaching.

Introduction

Parallel computing is information pro-
cessing that emphasizes the concurrent
manipulation of data elements belonging
to one or more processor solving a single
problem. A parallel computer is a multi-
processor computer capable of parallel
processing. Parallel computing has
emerged as a key enabling technology in
modern computing. The past several years
have witnessed an ever-increasing accep-
tance and adoption of parallel processing,
both for high-performance scientific com-
puting and for more “general-purpose”
applications. The trend was a result of the
demand for higher performance, lower
cost, and sustained productivity. The ac-
ceptance has been facilitated by two ma-
jor developments: massively parallel pro-
cessors and the widespread use of clus-
ters of workstations.

For those interested in high-speed
computing, studying and using parallel
computing techniques is a necessity now.
In the last ten years, courses on parallel
computing and programming have been
developed and offered in many institu-
tions as a recognition of the growing sig-
nificance of this topic in computer sci-
ence [1],[9],[10], [13]. Parallel computa-
tion curricula are still in their infancy,
however, and there is a clear need for
communication and cooperation among
the faculty who teach such courses. Geor-
gia State University (GSU), like many in-
stitutions in the world, has offered a par-

allel programming course at the graduate
and Senior undergraduate level for sev-
eral years. It is not a required course for
computer science majors, but a course
designated to accomplish computer sci-
ence hours. It is also a course used to ob-
tain a Yamacraw Certificate. Yamacraw
Training at GSU was created in response
to the Governor’s initiative to establish
Georgia as a world leader in
highbandwidth communications design.
High-tech industry is increasingly per-
ceived as a critical component of
tomorrow’s economy.

As we all know, the message passing
paradigm has several disadvantages: the
cost of producing a message passing code
may be very high, the length of the code
grows significantly, and it is much less
readable and less maintainable than the
sequential version. For these reasons, it
is widely agreed that a higher level pro-
gramming paradigm is essential if paral-
lel systems are to be widely adopted. Most
schools teaching the course use low-level
message passing standards such as MPI
or PVM and have not yet adopted high-
level parallel language directives such as
OpenMP [1], [9], [10], [13]. To catch up
with the industrial trend, we decided to
teach the shared-memory parallel pro-
gramming model (using a high-level par-
allel language directives) in addition to
the message passing parallel program-
ming model (using low-level message
passing libraries). This paper describes
our experience in using both high-level

parallel language directives and low-level
message passing libraries to teach a par-
allel programming course at Georgia
State University. The paper is organized
as follows. In Section 2, we give a brief
introduction to several popular parallel
programming standards in industry and
academic environments. Section 3 will
justify our choice of using both OpenMP
and MPI in our teaching. In Section 4, we
will discuss in detail how MPI and OpenMP
are used in the projects and how they can
complement each other in learning. We will
conclude our paper in Section 5.

Parallel Programming
Standards

Many parallel programming lan-
guages and standards have been pro-
posed. The four major standards for pro-
gramming parallel systems that were de-
veloped in open forums are: High Perfor-
mance Fortran (HPF) [8], OpenMP [2],
PVM [3] and MPI [5]. Among them, HPF
and OpenMP are high-level parallel pro-
gramming language standards, and PVM
and MPI are low-level message-passing
language interfaces.

HPF consists of Fortran 90 and a set
of extensions to it. HPF extensions are
defined by a coalition of industry, aca-
demic and laboratory representatives, and
provide access to high-performance ar-
chitecture features while maintaining
portability across platforms. HPF relies
on advanced compiler technology to ex-

4/3&4 July-December 2003 1



pedite the development of data-parallel
programs [8]. Thus, although it is based
on Fortran, HPF is a new language, and
hence requires the construction of new
compilers. As a consequence, each imple-
mentation of HPF is, to a great extent,
hardware specific, and until recently there
were very few complete HPF implemen-
tations. Furthermore most of the current
implementations are proprietary and quite
expensive. HPF has been written for the
express purpose of writing data-parallel
programs, and, as a consequence, it is not
well-suited for dealing with irregular
data-structures or control-parallel pro-
grams.

OpenMP has emerged as the standard
for shared memory parallel programming.
For the first time, it is possible to write
parallel programs which are portable
across the majority of shared memory
parallel computers. OpenMP is a portable,
scalable model that gives shared-memory
parallel programmers a simple and flex-
ible interface for developing parallel ap-
plications for platforms ranging from the
desktop to the supercomputer.

OpenMP has the following benefits
for parallel programming compared with
message passing models such as MPI: a)
A user just needs to add some directives
to the sequential code to instruct the com-
piler how to parallelize the code. Hence,
it has unprecedented programming ease,
making threading faster and more cost-
effective than ever before. b) The direc-
tives are treated as comments when run-
ning a single processor. Hence, a single-
source solution can be used for both se-
rial and threaded applications, lowering
code maintenance costs. ¢) Parallelism is
portable across Windows NT and Unix
platforms. d) The correctness of the re-
sults generated using OpenMP can be
verified easily which dramatically low-
ers development and debugging costs.

The Parallel Virtual Machine (PVM)
is a software package that permits a het-
erogeneous collection of Unix and/or
Windows computers hooked together by
anetwork to be used as a single large par-
allel computer. It uses the message-pass-
ing model to allow programmers to ex-
ploit distributed computing across a wide
variety of computer types, including mul-
tiprocessor systems [3]. A key concept in
PVM is that it makes a collection of com-
puters appear as one large virtual ma-

chine, hence its name. The PVM comput-
ing model is simple yet very general, and
accommodates a wide variety of applica-
tion program structures. The program-
ming interface is deliberately straightfor-
ward, thus permitting simple program
structures to be implemented in an intui-
tive manner. The user writes his applica-
tion as a collection of cooperating tasks.
Tasks access PVM resources through a
library of standard interface routines.
These routines allow the initiation and
termination of tasks across the network
as well as communication and synchro-
nization between tasks. The PVM mes-
sage-passing primitives are oriented to-
wards heterogeneous operation, involv-
ing strongly typed constructs for buffer-
ing and transmission. Communication
constructs include those for sending and
receiving data structures as well as high-
level primitives such as broadcast, bar-
rier synchronization, and global sum.
MPI is another message-passing stan-
dard for parallel programming. It has
gained more popularity and acceptance
in the parallel computing community re-
cently. The goal of MPI is to develop a
widely used standard for writing mes-
sage-passing programs. As such the in-
terface attempts to establish a practical,
portable, efficient, and flexible standard
for message passing. The MPI Forum
seeks to make use of the most attractive
features of a number of existing message
passing systems, rather than selecting one
of them and adopting it as the standard.
The MPI standardization effort involves
about 60 people from 40 organizations
mainly from the United States and Eu-
rope. Most of the major vendors of con-
current computers are involved in MPI,
along with researchers from universities,
government laboratories, and industry.
MPI specifies a library of extensions to
C and Fortran that can be used to write
message passing programs [5]. So an
implementation of MPI can make use of
existing compilers, and it is possible to
develop more-or-less portable MPI librar-
ies. Thus, unlike HPF, it is relatively easy
to find an MPI library that will run on
existing hardware. All of these implemen-
tations can be freely downloaded from the
internet. Message passing is a completely
general method for parallel programming.
Indeed, the generality and ready availabil-
ity of MPI have made it one of the most

widely used systems for parallel program-
ming. Compared with the PVM library,
MPI has recently become more popular.

All the above standards have been
used extensively in industry and academic
environments. It is easy to see that both
high-level parallel language standards and
low-level message-passing interfaces
have advantages over the others and their
own limitations, and will co-exist in the
future. However, we believe that the fu-
ture of high performance computing
heavily depends on high level parallel
programming languages such as OpenMP
due to the increasingly high labor costs
and the scarcity of good parallel program-
mers. High level parallel programming
languages are one way to make parallel
computer systems popular and available
to non-computer scientists and engineers.
Hence, teaching students how to use high
level parallel programming language in-
terfaces is an important task for teaching
parallel programming.

Why Teach Both OpenMP
and MPI?

The OpenMP Application Program In-
terface (API) supports multi-platform
shared-memory parallel programming in
C/C++ and Fortran on all architectures,
including Unix platforms and Windows
NT platforms. Jointly defined by a group
of major computer hardware and software
vendors, OpenMP is a portable, scalable
model that gives shared-memory paral-
lel programmers a simple and flexible
interface for developing parallel applica-
tions for platforms ranging from the desk-
top to the supercomputer [2]. It consists
of a set of compiler directives and library
routines that extend FORTRAN, C, and
C++ codes for shared-memory parallel-
ism.

OpenMP’s programming model uses
fork-join parallelism: the master thread
spawns a team of threads as needed. Par-
allelism is added incrementally: i.e., the
sequential program evolves into a paral-
lel program. Hence, we do not have to
parallelize the entire program at once.
OpenMP is usually used to parallelize
loops. A user identifies the most time con-
suming loops in the code, and splits them
up between threads. When parallelizing
a loop in OpenMP, we may also use the
schedule clause to perform different

2 Journal of STEM Education



scheduling policies which effect how loop
iterations are mapped onto threads.
Hence, to achieve a limited degree of load
balancing in OpenMP is quite easy. The
section work-sharing construct gives a
different structured block to each thread.
This way, task parallelism can be imple-
mented easily if each section has a task
(procedure call).

Because OpenMP is a high level par-
allel language interface, many details are
hidden from a programmer. The benefit
is that students can learn quickly and start
to program immediately after learning
some techniques. The pitfall is that stu-
dents cannot clearly see the communica-
tions involved in a parallel program. Our
approach to overcome this problem is to
supplement OpenMP projects with some
simple MPI programs. Students first learn
the basics of parallel programs in a dis-
tributed memory environment. They start
to parallelize a sequential code using
simple MPI communication constructs
such as MPI_Bcast, MPI_Reduce,
MPI_Send, and MPI_Recv. Through sev-
eral small projects, they learn the concepts
of one-to-one communication, multicast,
broadcast, reduction, synchronization,
and concurrency. Later, when they use
OpenMP to parallelize a program, they
already have a deep understanding of
communication structure, communication
overhead, scalability and performance issues.

Another shortcoming with the current
OpenMP standard is that it does not pro-
vide memory allocation schemes for ar-
rays and other data structures since
OpenMP is designed for shared memory
machines. Again, this relieves the stu-
dents from complicated memory alloca-
tion decisions, allowing concentration on
loop and task parallelism. This is good
for the ease of programming, but students
do not know the details of array alloca-
tion schemes such as BLOCK or CY-
CLIC schemes commonly used in distrib-
uted memory environments. Since the
memory on the SGI Origin 2000, which
is used in our teaching, is not physically
shared, SGI provides data distribution
directives to allow users to specify how
data is placed on processors. If no data
distribution directives are used, then data
are automatically distributed via the “first
touch” mechanism [4] which places the
data on the processor where it is first used.
Because different allocation schemes may

affect the performance of a program
greatly, SGI data distribution directives
are required in the final project to show
the performance improvement. Students
are required to try several data distribu-
tion schemes, to observe the running
times and to comment on the timing re-
sults as described below. In this way, the
relationship between memory allocation
schemes and performance is demon-
strated and the problem with OpenMP in
teaching is solved.

Due to the inherent limitations within
OpenMP, students would not learn all the
concepts and the whole picture in paral-
lel programming using OpenMP alone.
Our strategy is to supplement OpenMP
with explanation on several typical MPI
codes and small projects using the MPI
standard. Then, students experiment with
various scheduling policies and compli-
cated parallelization methods in OpenMP.
In this way, students experience various
parallel schemes and techniques in a short
period of time. This would be very hard
to achieve if only the MPI or PVM pro-
gramming model were used in teaching
parallel programming because of the time
demands for implementation and paral-
lelization of large codes in MPI or PVM.

Hence, our strategy is to teach students
the basic concepts in parallel program-
ming such as scalability, broadcast, one-
to-one communication, performance,
communication overhead, speedup, etc,
through a low-level parallel programming
language interfaces (normally message
passing), and teach other concepts such
as various scheduling policies and task
parallelism through a high-level parallel
programming language constructs (nor-
mally directives). Since MPI and
OpenMP are the most widely used lan-
guages in the two categories, these are
selected to teach parallel programming.
The following section details the strategy of
using both OpenMP and MPI in the class.

Programming Projects

Programming projects are an impor-
tant part of the learning experience The
parallel programming class at GSU is a
semester-long class for upper-level under-
graduates and beginning graduate stu-
dents. Several tutorials on MPI and
OpenMP from the Ohio Supercomputing
Center were used as supplements to a

parallel algorithms textbook [12].

The course begins with an overview
of parallel computing and continues with
a brief introduction to parallel comput-
ing models such as various PRAMs,
shared memory models and distributed
memory models. The concepts of data
parallelism and pipelining are also intro-
duced at that time. The next block of lec-
tures forms a transition into a more or less
standard parallel algorithms course. First
serial and parallel versions for a very
simple computation - e.g., prefix sums
and prime finding, are discussed. In the
course of analyzing the performance of
these algorithms, the concepts of speedup,
scalability and efficiency are developed.
The deterioration of the performance of
the parallel algorithm as the number of
processes is increased leads naturally to
a discussion of Amdahl’s Law and
scalability. Then, various interconnection
networks are presented. Performance
measures such as degree, diameter, aver-
age distance, connectivity, fault-toler-
ance, and routing are introduced. The
performance and cost measures of differ-
ent topologies are analyzed and com-
pared. Students are shown that it is im-
possible to find a topology which is the
best for interconnecting processors in a
parallel computing system in terms of all
the performance measures. The remain-
der of the lectures is devoted to the de-
velopment and analysis of a variety of
standard parallel algorithms from linear
algebra, some algorithms for searching
and sorting, and graph algorithms. When
an algorithm is discussed, its implemen-
tation in MPI or OpenMP is also presented.

To effectively evaluate the students in
both theory and practice in parallel com-
puting, the course work consists of two
tests, a final exam, five programming
projects and a research paper. Since the
course’s emphasis is on parallel program-
ming, projects are an important part of
the course. The projects give students the
opportunity to apply theory learned in the
classroom to solving problems and pro-
vide hands-on experience to students on
using parallel languages and compilers.

Project 1:
The purpose of the first project is sim-
ply to acquaint students with the sys-
tem and programming environment of
the Origin 2000. In this project, they

4/3&4 July-December 2003 3



write a simple addition code, and
measure the parallel times using dif-
ferent numbers of processors. Several
MPI communication constructs are
used in the project.

Project 2:

In the second project, the students
implement an MPI code to calculate
using Simpson’s Rule instead of the
rectangle rule discussed in class,
where students are exposed to vari-
ous MPI communication functions.
For timing measurements and preci-
sion, they need to test the code using
several different numbers of subinter-
vals to see the effect on the precision
of results and different number of pro-
cessors on the execution times.

Project 3:

In the third project, students imple-
ment the parallel game of life.
Through the assignment, students
learn various domain decomposition
strategies. Both 1D and 2D domain
decompositions are discussed. Since
2D decomposition is quite involved
in MPI, extra credits are given if they
implement the code using 2D decom-
position. Students are required to give
performance curves (speedup and ex-
ecution time) for their program with
different number of processors.

Project 4:

After the first three projects, students
now understand the communication
mechanisms of parallel computing
systems, and communication over-
head within a parallel code. Hence, it
is time to introduce OpenMP and to
implement some more sophisticated
codes. After briefly discussing the use
of OpenMP and illustrating OpenMP
through several examples, students
are asked in the fourth project to ini-
tialize a huge array so that each ele-
ment has its index as its value. A sec-
ond real array which contains the run-
ning average of array is then created.
The loops are parallelized with all four
scheduling schemes available in
OpenMP (static, dynamic, guided, and
runtime) and the running times are
measured with different scheduling
policies and different chunk sizes. Stu-
dents write up their observations on the
timings using the four different sched-
uling policies and explain why the per-

formance differs in these cases.

Project 5:

In the fifth project, students learn how
to parallelize a real research Fortran
code in OpenMP or HPFE. Since only
OpenMP is discussed in class, stu-
dents need to learn HPF themselves
if they choose to implement a code in
HPF. Since HPF and OpenMP have
many similarities, it seems that is is
not a problem. The code is from our
research project funded by NSF. The
program calculates the power-spectral
density of thin avalanche photodiodes,
which are used in optical networks.
The program extends the time-domain
analysis of the dead-space multipli-
cation model to compute the
autocorrelation function of the APD
impulse response [6]. In particular, the
correlation subroutines are extremely
memory and time intensive, since they
involve large three dimensional arrays
and four nested loops. Clearly, if we
can parallelize these loops efficiently,
then we can reduce the computation
time drastically. In our research, we
have parallelized the code using both
MPI and OpenMP and the results
show that both parallel codes are quite
scalable up to 24 processors on an SGI
Origin 2000 [11]. The results obtained
in our research project are used as
guidance for students to parallelize the
code in project 5.

Students have to apply all the
knowledge learned so far in the course
to parallelizing the code. The project
contains several parts. First, they need
to select the best scheduling policy
and chunk size. In order to do so, they
can pick up one typical procedure in
the code for parallelization. They need
to test the code using static, dynamic,
and guided scheduling policies with
different chunk sizes and different
number of processors. After measur-
ing the time and speedup for each
case, list the results in a table. Sec-
ond, they pick up the best combina-
tion of scheduling policy and chunk
size based on the results obtained, and
use them to parallelize the other simi-
lar subroutines which dominate the
running time. Other subroutines take
much less time and are not required
for parallelization. Now, they have

parallelized all the subroutines using
loop parallelism, it is time to
parallelize the code using both loop
and task parallelism in the third step.
Several subroutines in the code are
independent, and can be executed
concurrently. So far, the best sched-
uling policy, best chunk size for the
policy, and both loop and task paral-
lelism are obtained in the above three
steps, while array mapping is done au-
tomatically by the OpenMP compiler.
For the final step, the arrays are dis-
tributed manually using SGI array dis-
tribution directives because array dis-
tribution directives are not available
in OpenMP. The purpose is for stu-
dents to understand the effect of ar-
ray distribution on the runtime perfor-
mance. Students are also required to
write a short report to summarize the
results obtained. Through these steps,
students learn how to parallelize a real
code in a step-by-step fashion.

Final Paper:

Besides programming projects, stu-
dents are also required to write a re-
search paper or a survey paper on a
chosen topic in parallel processing.
The purpose is for the students to ap-
ply the knowledge learned in the
course to an application through a re-
search paper or to acquire a deep
knowledge in a specific topic through
a survey.

A research paper should include
some new discovery and discussion
in the area of parallel language/sys-
tem design, parallel architecture, or
parallel algorithms. Design and analy-
sis of a new parallel algorithm and a
comprehensive comparison with other
existing parallel algorithms could be
a good topic. Some references are
needed to give an overview of the area
and to give some pointers to existing
algorithms and schemes. Some stu-
dents have implemented algorithms
using MPI and/or OpenMP using vari-
ous strategies and compared the per-
formance of their implementations
with the results published in the lit-
erature. We believe that some of the
research findings are publishable af-
ter some revisions. For example, one
student implemented a parallel pro-
gram for Cholesky factorization us-
ing both MPI and OpenMP, and did a

4

Journal of STEM Education



lot of testing using various schedul-
ing and partition strategies. He also
did a comprehensive comparison
among the different implementations,
and wrote an excellent research pa-
per at the end of the course [7]. The
paper is being revised and potentially
could be published in a conference.
At the end of the term, students need
to present their findings and submit a
research report.

A survey paper shall be a review
and discussion (e.g., compare, con-
trast, add opinions of your own) of
some recent topic in parallel language/
system design, parallel architecture,
or parallel algorithms. It should in-
clude reference to at least two papers
published within the last 5 years from
reputable technical journals or pro-
ceedings from related conferences.
Some students selected a topic not
covered in the course, while others
surveyed the most recent research re-
sults in a topic which has been cov-
ered in the class, but not so deeply. It
is required that student come up with
their own opinions about the current
research issues in the particular area.
At the end of the term, students need
to present a talk overviewing the topic
they choose and submit a survey pa-
per. Other students also benefit from
their survey talks, since of the most
time survey talks are about new top-
ics or recent developments in an area.

It is our intention for the students to learn
theoretical concepts and parallel program-
ming practices in the course through lec-
tures, tests, programming projects and a
research/survey paper. The outcome of
the course is very good. Based on student
evaluations and comments on the course,
most students feel that they learned a lot
in the course. For example, in the teach-
ing evaluation of the course in the Spring
term of 2002, I received 4.52 out of 5 for
Question 13 (Stimulated thinking and
gave subject insights) and 4.68 out of 5
for Question 15 (Motivated students to
learn). My overall teaching effectiveness
(Question 17) in the course is 4.83 out of
5 (20 students gave me the highest mark
A and 4 students gave me the second high-
est mark B). This shows that our teach-
ing methodology and approaches adopted
in the course are very successful. Some
of the students have already applied the

knowledge learned in the course to re-
search projects supported by the NSF and
Air Force. This would have been impos-
sible if only MPI had been taught in the
course due to limited time.

Conclusion

Similar to assembly languages and
high-level languages such as C or Java in
the sequential domain, both low-level and
high-level parallel language interfaces
have their shortcomings and advantages.
Hence, students need to learn both low-
level message passing interfaces and
high-level parallel language directives.
This paper provides an innovative course
design which teaches both low-level mes-
sage passing interfaces and high-level
parallel language directives. As OpenMP
becomes more popular for parallel pro-

gramming because of its many advan-
tages over message passing programming
models, it is important to introduce
OpenMP in a parallel programming
course. However, OpenMP also has some
shortcomings for teaching parallel pro-
gramming concepts. Our strategy is to use
MPI to convey the basic concepts of par-
allel programming and to use OpenMP
to tackle more complicated problems,
such as various scheduling policies and
combined loop and task parallelism. It
appears that the strategy is well received
by the students. In the course, students
learned the basic concepts, and also could
parallelize real scientific codes within a
short period using OpenMP. The practi-
cal experience gained in parallelizing a
real scientific code is essential for stu-
dents to apply parallel computing in their
future career.

Bibliography

1. F.C. Berry. An undergraduate par-
allel processing laboratory, IEEE
Trans. Educations, vol. 38, pp. 306-311,
Nov. 1995

2. Rohit Chandra, Ramesh Menon, Leo
Dagum, David Kohr, Dror Maydan,
and Jeff McDonald, Parallel Pro-
gramming in OpenMP, Morgan Kaufmann
Publishers, October 2000, 300 pages

3. J.Dongarra, P. Kacsuk, N. Podhorszki
(Editors): Recent Advances in Paral-
lel Virtual Machine and Message Pass-
ing Interface: 7th European PVM/MPI
Users’ Group Meeting, Balatonfuered,
Hungary, September 2000

4. J.Fier. Performance Tuning Optimization
for Origin 2000 and Onyx 2. Silicon
Graphics, 1996.http://techpubs.sgi.com

5. W. Gropp, E. Lusk, A. Skjellum.
Using MPI : portable parallel pro-
gramming with the message- pass-
ing interface, MIT Press, Cambridge,
Mass., 1994.

6. M. M. Hayat, O-H. Kwon, Y. Pan,
P. Sotirelis, J. C. Campbell, B. E.
A. Saleh, and M. C. Teich, Gain-
bandwidth characteristics of thin
avalanche photodiodes, IEEE Trans-
actions on Electron Devices, Vol. 49,
No. 5, May 2002, pp. 770-781.

7. Z.Liu. Parallelization of Cholesky
Factorization Algorithm with MPI

and OpenMP Implementations, CSC6310
Final Project Report, Department
of Computer Science, Georgia State
University, May 2001.

8. C.H.Koelbel. The High performance
Fortran handbook, MIT Press, Cam-
bridge, Mass., 1994

9. R.Miller. The status of parallel process-
ing education, Computer, vol. 27,
no. 8, pp. 40-43, Aug. 1994

10. C. H. Nevison. Parallel computing
in the undergraduate curriculum,
Computer, vol. 28, no. 12, pp. 51-53,
Dec. 1995

11.Yi Pan, C.S. Ierotheou, and M.M.
Hayat, Parallel Implementation of
the Recurrence Method for Com-
puting the Power-Spectral Density
of Thin Avalanche Photodiodes, Proc. of
the 4th Workshop on High-Performance
Scientific and Engineering Computing
with Applications, IEEE CS Press,
August 18-21, 2002, Vancouver,
British Columbia, Canada.

12.M. J. Quinn. Parallel Computing -
Theory and Practice, McGraw-Hill,
INC., 1994

13. B. Wilkinson and M. Allen. A state-
wide senior parallel programming
course, IEEE Trans. Educations, vol. 42,
no. 3, pp. 167-173, 1999

4/3&4 July-December 2003 5



6 Journal of STEM Education



