
4/3&4 July-December 2003 1

A Tool for Data Structure Visualization
and User-defined Algorithm Animation
Tao Chen, Tarek Sobh and Abhilasha Tibrewal
University of Bridgeport

Abstract
In this paper, a software applica-

tion that features the visualization of
commonly used data structures and
their associated insertion and dele-
tion operations is introduced. In ad-
dition, this software can be used to
animate user-defined algorithms.
Examples illustrating the function-
ality of the software as a supplemen-
tal teaching tool are discussed.

1. Introduction
Data Structures and Algorithms is a

fundamental course in Computer Science.
However, many students find it difficult
because it requires abstract thinking. It
would be very helpful if there were a vi-
sualization tool of data structures such as
arrays, queues, stacks, trees and graphs
for students to experiment with. The tool
would allow students to see the workings
of common insert/delete operations in
form of changes that take place to the
corresponding data structure. Moreover,
this tool would provide a simple lan-
guage, by which students can write their
own algorithms so that the execution of
the algorithm is animated. This project is
intended to create such an exploration
environment, in which students can learn
through experimentation. This tool can be
used as an effective supplement to the tra-
ditional classroom education and text-
books for Data Structures and Algorithms
courses. The software package presented
in this paper has the following function-
ality.

a. Provides complete visualization for
the widely used data structures such
as array, stack, queue, tree, heap
and graph.

b. Provides the animation of common
operations associated with the data
structures, such as inserting an el-
ement into and deleting an element

from the specified data structures.
c. Provides animation of simple user-

defined algorithms.

The rest of the paper is organized as
follows. In Section 2, we discuss some
of the currently existing tools; Sec-
tion 3 entails a detailed discussion of
the software package both in terms of
design and functionality to bring out
the pedagogical effectiveness of the
tool; and Section 4 includes the con-
cluding remarks.

2. Background
The development of technologies and

the evolvement of the World Wide Web
have influenced education. Instructional
Web sites and courses on the Web have
grown dramatically. Web-based courses
that consist of the syllabus, assignments
and lecture notes are now widely used.
Instructional Web sites that are dedicated
to Data Structures and algorithms can be
easily found by using Search Engines. To
name a few:

http:/ /swww.ee.uwa.edu.au/~plsd210/ds/
ds_ToC.html [1]

http://www.cee.hw.ac.uk/~alison/ds98/ds98.html
[2]

http://www.cs.twsu.edu/~bjowens/cs300/ [3]

http://www.cs.berkeley.edu/~edith/cs270/ [4]

However, The majority of the instruc-
tional web sites explored during this
project lack interactive multimedia.

One of the best sites found that does
contain interactivity is a course site de-
veloped for teaching Data Structures and
Algorithms in Java by the Computer Sci-
ence Department of Brown University
[5]. This site has a collection of applets
that demonstrate some commonly used
data structures such as queues, stacks, and
some famous algorithms such as merge
sort, quick sort, etc. However, these
applets are not complete and lack a com-

mon Graphical User Interface. Another
good site in interactive Data Structure
visualizations is developed by Duane J.
Jarc in George Washington University [6].
This site provides animations in binary
Trees, graphs, and sorting algorithms. But
there is no animation available for algo-
rithms that are defined by users.

Algorithm animation is a type of pro-
gram visualization that is mainly con-
cerned with displaying the executions of
computer algorithms. Lots of work has
already been done in this field. For ex-
ample, the XTANGO [7] and POLKA [8]
systems developed by the Graphic, Visu-
alization and Usability Center (GUV) at
Georgia Tech are general-purpose anima-
tion systems, which require the user to
write an algorithm in the C language and
register the events that the user wants to
observe during the execution of the algo-
rithm. However, these systems are imple-
mented on top of Unix and X11 Window
system, and are not portable to other plat-
forms. In addition, we feel they are over-
kill for a basic Data structures and Algo-
rithms course.

Another algorithm animation system
found is Zeus [9], which is developed by
Digital Equipment Corporation’s Systems
Research Center. This system is a little
complicated, requiring from the user lots
of effort to prepare animations. It is tar-
geted at more advanced application pro-
grammers.

Other researched software included
SWAN [17], TRAKLA and TRED [14],
ANIMAL [16] AND JAWAA [15]. Swan
focuses on algorithm animation involv-
ing graphs and is platform dependent.
TRAKLA and TRED are parts of a very
powerful system with built in assessment
and automatic administration of the
course. The TRAKLA server is at the
heart of the system. The authors, however,
do not mention the availability of the sys-
tem. ANIMAL is platform independent,
requires no programming code, the GUI

2 Journal of STEM Education

features animation speed control, code
and element highlighting and marking. It
meets its objective of wider applicability
such that it is not limited to algorithm or
data structure animation. It is applicable
for introductory courses with students
form different majors rather than students
with pure computer science interests.

JAWAA uses a simple command lan-
guage for creating animation. JAWAA’s
objects are designated in a similar man-
ner to those in Samba, one line commands
for creating and moving objects. With
Samba, animations are built using only
primitive objects, but with JAWAA data
structures can be created easily in one-
line commands. JavaMy, inspite of its
close resemblance to JAWAA has addi-
tional and unique characteristics of its
own as described below.

JavaMy provides built in data struc-
ture visualization for common operations
like inserting and deleting with respect
to corresponding data structures. The al-
gorithm animator features parallel sym-
bolic and iconic representations in form
of animation and code to make the tool
pedagogically effective. Since our soft-
ware is intended to aid first year Com-
puter Science students learning Data
Structures and Algorithms, ease of use
becomes our main consideration. Our
approach for the user-defined algorithm
animation is that the user codes the algo-
rithm in a simple language called JavaMy,
which is very similar to Java. The only
effort the user needs to make is to instan-
tiate the data structures he/she wants to
observe using the observable data types
provided by the software. After parsing
the JavaMy algorithm file, an animation
frame is created and the observable data
structures are added to the frame so that
the user can watch the changes made to
the data structures when the algorithm is
executing.

3. Software Package
In this section, an attempt is made to

put forth a comprehensive description of
the software to exemplify the different ca-
pabilities of the system. A general intro-
duction to the software shall commence
the description, followed by a shifting
focus on features of graphical user inter-
face, the software’s effectiveness as a data
structure visualization tool and its effec-

tiveness as a user-defined algorithm ani-
mator. The above mentioned sections in-
clude examples to further the pedagogi-
cal effectiveness of the tool.

3.1 Overview of the Software

The JavaMy software has been devel-
oped aiming at its use as a pedagogical
tool in the fundamental data structures
and algorithms course. The targeted au-
dience thus, is the student community un-
dertaking such a course or involved in
self-study of the above concepts. The
above fact makes ease of use the primary
goal of this software. At the same time,
the software design is competent enough
to follow the “ten commandments of al-
gorithm animation” described by Gloor
[12]. Consistent design, interactivity,
keeping the user engaged, incorporating
symbolic and iconic representations are
thus, some of the hallmarks of the soft-
ware. More involved discussions on the
same are included in the next section.

JavaMy is a visualization tool that can
be used to supplement teaching of data
structures and related algorithms. It can
be used in the classroom as a teaching aid
in lectures and in the lab setting to en-
courage exploration learning. The soft-
ware functionality can be divided into two
broad areas viz. the built-in data struc-
ture visualizations and the facility of user-
defined algorithm animation. The observ-
able data structures currently available in
this software packages include: array,

stack, queue, binary search tree, heap and
graph.

The software uses JavaMy as the pro-
gramming language. JavaMy has been
chosen for its simplicity thus, making it
suitable for the beginners. Moreover, the
syntax of the language is close to pro-
gramming languages such as Java and in
our opinion makes it a better choice as
compared to command line languages
such as the one used in the JAWAA soft-
ware [15].

An overview of the software would
be incomplete without the implementa-
tion specifics of the software. JavaMy is
implemented using Java, thus making it
platform independent and portable, which
goes a long way in making it our natural
choice for implementation. Moreover, the
AWT and SWING packages of Java pro-
vide extensive components for creating
the GUI. To animate a user-defined algo-
rithm, a lexical analyzer and parser are
needed. A lexical analyzer breaks an in-
put stream of characters into tokens. A
parser reads the input tokens and converts
the tokens to a Java program. There are
several ways to build a lexer and parser.
One possibility would be to code the lexi-
cal analyzer and parser completely from
scratch, implementing all string handling
and checking functions, which is a very
tedious and error prone process. Another
method is to find a Java parser generator,
which reads a grammar specification and
converts it to a Java program that can rec-
ognize matches to the grammar. After in-

Figure 1: Insert 20 into array

4/3&4 July-December 2003 3

tensive search, we found that JavaCC
[10], a product of Sun Microsystems is
currently the most popular parser genera-
tor for use with Java applications. Con-
sequently, it was our choice. The parser
is generated by two steps: (1) Run JavaCC
on the grammar input file to generate a
set of Java files that implement the parser
and the lexer. (2) Compile all the Java
files obtained in step (1).

3.2 Features of the Graphical User
Interface

In designing the GUI, a lot of focus
has been on keeping it consistent such that
the user finds it easy to use. Gloor [12]
gives top priority to consistency among
“the ten commandments of algorithm ani-
mation”. The control interface is always
at the bottom of the screen in form of a
toolbar leaving the entire window for the
animation, thereby, meeting the goal of
emphasizing visual component. The fol-
lowing is a snapshot of inserting an ele-
ment into an array

The toolbar at the bottom has a help
button that allows the user to switch on
the help feature. The help feature essen-
tially provides the user with the function
of the control over which the mouse
moves. Once comfortable with the GUI
features, the user can conveniently switch
it off. The animations can be viewed step-
wise or in a continuous manner. More-
over, the scroll bar allows the user to
specify the speed of animation. The
‘Pause’ and ‘Resume’ buttons provide the
users with added control such that they
can view the visualization to match their
pace. The user can abort a particular ani-
mation at any given point in time, which
is advantageous if an algorithm is execut-
ing for a long time while the user has al-
ready understood all concepts. It goes a
long way in keeping the user interested,
one of “the ten commandments of algo-
rithm animation”. The above features ac-
count for a lot of interactivity built into
the software. The animation specific con-
trols (in the above figure – make array,
delete node, insert node) are always in-
cluded on the left side of the window.

Moving onto the menu options, the
‘File’ option includes the usual functions
of opening, closing, saving files and ex-
iting the software. The ‘Data Structures’
menu enables the user to work with the

built-in data structure visualizations. The
‘Build’ option provides the compile and
run tools to be used in conjunction with
user-defined algorithms. Finally, the
‘About’ menu includes information about
the current version of JavaMy software.

To relate the above features to the
functionality of the software, an instance
of working with built-in data structure vi-
sualization would entail choosing the
same from the Data Structures menu.
Animating a user-defined algorithm, on
the other hand, shall sequentially step
through opening the file or alternatively
typing the code in a new file and saving
it; compiling; and running the algorithm.
In this case, the GUI meets the goal of
incorporating symbolic and iconic repre-
sentation in that while the left side shows
the iconic animation of the algorithm, the
right side displays the algorithm code for
easy reference.

3.3 JavaMy as a Data Structure Visu-
alization tool

An animation of a data structure is
helpful to students as an alternative view
in understanding a newly presented data
structure. An animation can be easier to
understand and remember than a textual
representation, especially when one can
interact with the animation [15].

The observable data structures cur-
rently available in JavaMy software pack-
age include array, stack, queue, binary
search tree, heap and graph. Following is

the listing of the specific operations on
corresponding data structures, visualiza-
tions for which are currently available:
• Array – Make Array, Insert Node,

Delete Node
• Stack – Make Stack, Push Node, Pop

Node
• Queue – Make Queue, Enqueue,

Dequeue
• Binary Search Tree – Insert, Delete,

Find Node
• Heap – Make Heap, Delete Max Node
• Graph – Make Graph

The figure above shows a screen for in-
serting a node into binary search tree.

Noteworthy, is the fact that the user is
allowed to choose the value to be inserted.
This makes it really effective whereby the
instructor can use this as a tool to visu-
ally describe the navigation of the tree to
correctly insert a node as dictated by the
invariant. Alternatively, the students can
be assigned an exercise to use the ‘Ran-
dom’ or ‘I’ll pick’ feature to discover the
invariant of a binary search tree by mul-
tiple runs of the software in a lab setting.

Another appropriate area could be to
use the delete node from binary search
tree visualization. The instructor can ac-
tively engage students while explaining
the three possible scenarios in the dele-
tion process where the node to be deleted
could be a leaf, a node with one child or
a node with two children. The students
could then be assigned the task of coding
the program for the same that could then

Figure 2: Insert an element into the tree

4 Journal of STEM Education

be tested using the algorithm animator.
Whether it is the above described sce-

narios or insertion/deletion into arrays,
stacks, queues or heaps, JavaMy provides
students with an alternative and visual
perspective, which may help increase stu-
dent understanding.

3.4 JavaMy as an Algorithm Animator

Students in computer science are con-
stantly asked to understand dynamic pro-
cesses in the form of computer algo-
rithms. Aside from a pseudocode on com-
puter program implementation, a higher
order description for the algorithm is usu-
ally conveyed in words, perhaps with a
well chosen picture or two. Unfortunately,
computer code, words and individual pic-
tures present only static descriptions, spe-
cific views or instances of a dynamic pro-
cess. Perhaps, the reason why some oth-
erwise good students have trouble under-
standing code examples is that they are
unable to translate such static description
to dynamic process in their imagination.
[17]

While the previous section discussed
visualization of common operations in
form of the series of changes that take
place to the corresponding data structures,
this section elaborates on the proposition
of animating user-defined algorithms in-
volving the specified data structures. This
feature of the software has a twofold us-
age: it can be used by instructors to aid in
teaching algorithms and it can be used by
students to understand how their pro-
grams work.

Two areas where this feature can be
gainfully employed are common applica-
tion of the data structures and algorithm
comparisons. Some examples of data
structure applications are balanced sym-
bol checking and conversions of infix ex-
pressions to postfix expressions and vice-
versa that are essential parts of operator
precedence parsing algorithm. Sorting is
one of the most commonly studied con-
cepts and there are many sorting algo-
rithms to be studied. The algorithm ani-
mator can be effectively used to animate
the different algorithms to provide stu-
dents with a dynamic perspective of the
various algorithms such that the students
can have a more gainful insight as to how
one algorithm compares to another. The
animations can also be used to teach the

concepts of time complexity of various
algorithms and analysis how one algo-
rithm compares to others in the same
genre. Some areas where the instructor
can effectively use this facet of the soft-
ware are in comparing sorting algorithms,
comparing the various tree traversals,
depth first search vs. breadth first search
in relation to graphs.

We include two detailed examples to
illustrate both the areas described above.
Balanced symbol checking algorithm il-
lustrates a stack data structure application
and the depth first search and breadth first
search in a graph provide a comparison
study of two related algorithms.

Balanced Symbol Checking
A balanced symbol checker is a tool

to help debug compiler errors, which
checks whether symbols are balanced. In
other words, whether every “{“ corre-
sponds to a “}”, every “[“ to a “]”, every
“(“ to a “)”, and so on. The basic algo-
rithm is stated as follows:

Make an empty stack. Read tokens
until the end of the input file. If the token
is an opening symbol, push it onto the
stack. If it is a closing symbol and if the
stack is empty, report an error. Otherwise,
pop the stack. If the symbol popped is not
the corresponding opening symbol, then
report an error. At the end of the file, if
the stack is not empty, then report an er-
ror.

The above algorithm coded in JavaMy
is shown in the following program:

/* Balanced Symbol checker is used to
check whether every { corresponds to a
}, every [to a], every (to a). And the
sequence [()] is legal, but [(]) is wrong.
 */

public static void main(String arg[])
{
 String input = “{[([([()]}”;
 char c, match;
 String errmsg;

 MyArray in = new
MyArray(AnimatorFrame.ARRAY_POSITION,
 input.length());
 MyStack pendingTokens = new
MyStack(AnimatorFrame.STACK_POSITION,
 0);

 for (int i=0; i<input.length(); i++)

 {
 in.setValue(input.charAt(i),i);
 }

 for (int i=0; i<input.length(); i++)
 {

c = in.getChar(i);
switch(c)
{
 case ‘(‘:
 case ‘{‘:
 case ‘[‘:

pendingTokens.push(c);
break;

 case ‘)’:
 case ‘}’:
 case ‘]’:

if (pendingTokens.isEmpty())
{

 System.out.println(“Extraneous “
 + c +” found”);

}
else
{
 match =

pendingTokens.topChar();
pendingTokens.pop();
if (match == ‘(‘ && c != ‘)’ ||
 match == ‘{‘ && c != ‘}’ ||
 match == ‘[‘ && c != ‘]’)
{
 errmsg = “Found \”” + c + “\”

 does not match \””+match+”\””;
 JOptionPane.showMessageDialog(
 new JPanel() , errmsg,”Error”,
 JOptionPane.ERROR_MESSAGE);

 }
}
break;

vdefault:
 break;
 }
}

while (!pendingTokens.isEmpty())
{
 match = pendingTokens.topChar();
 pendingTokens.pop();
 errmsg = “Unmatched \”” +

match +”\””;
 JOptionPane.showMessageDialog(

new
JPanel(), errmsg, “Error”,
JOptionPane.ERROR_MESSAGE);

}
 }

4/3&4 July-December 2003 5

The program starts with multiple-line
comments, which document programs
and improve program readability. The
comment notation in JavaMy is the same
as Java. Multiple-line comments are de-
limited with /* and */, and single-line
comments are delimited with //. Follow-
ing comments is simply a blank line.
Blank lines, space characters and tab char-
acters are known as white-space. Such
characters are used to make the program
easier to read. They are ignored by the
parser. The bold line indicates the begin-
ning of the real code of the algorithm. The
three lines following the opening paren-
theses declare normal variables as in Java,
using the data type provided by the Java
programming language. The next six bold
lines instantiated two observable data
structures that will show on the anima-
tion frame. The first one is an array, which
is used to hold the input string, that is,
the string to be checked. The second one
is a stack, which is used to hold the open-
ing symbols. Here, MyArray and
MyStack are used. Both of the construc-
tors of MyArray and MyStack take two
parameters. One is the Position param-
eter, which is used to decide the location
of the data structure on the animation
frame. Another parameter is the size of
the array or stack. The rest of the code is
the same as Java. Class MyArray and
MyStack provides most of the commonly
used methods, for example, setters and
getters for setting and getting the values
of the elements in the array, respectively,
push(), pop() and methods for peeking the
top element on the stack, etc. Details of
those methods are described in the docu-
mentation generated by Javadoc.

After parsing and compiling the algo-
rithm successfully, we can run the ani-
mation as described in subsection 3.2.1.
The resulting animation frame is shown
in Figure 3.

As can be seen from the resulting ani-
mation frame, there is a specific error
message, on the right are the contents of
the stack and the row at the top are the
popped out elements. Just above the er-
ror message is the input string where the
current input under processing is high-
lighted. On the right side of the screen is
the algorithm whose animation occurs on
the left.

This example could be used by in-
structors to supplement their lecture. The

Figure 3: Animation Frame of Balanced Symbol Checking

algorithm could be executed in the
stepwise mode where the instructor could
actively engage students in asking them
to come up with the next step orally and
then hitting the step button on the GUI
explaining why the students answer was
right or wrong as the case may be. At the
same time, students could animate the
algorithm to further their understanding
of the algorithm at a pace suitable to their
needs.

Breadth First Search
and Depth First Search
Algorithms
Breadth-first Search Algorithm

The breadth-first search algorithm
takes a graph and a vertex in the graph
known as the source, and visits (performs
functions on) each node that can be
reached from the source by traversing the
edges. In doing so, it is easy to determine
which vertices can be reached from the
source. The algorithm for breadth-first
search from a source vertex s in a graph
g is as follows:

enqueue the source vertex;
repeat
 dequeue u;
 perform any relevant operations on u;
 enqueue all the neighbors of u;
until the queue is empty

The algorithm coded in JavaMy is:
// Breadth First Search
public static void main(String args[])

{
 final Position GRAPH_POSITION =
new

Position(80, 80);
 MyGraph myGraph = new MyGraph(
GRAPH_POSITION, 4, 8, true);
 DrawableString label = new
DrawableString(
new Position(20, 390),
“Visited Nodes(Breadth First):”);
 DrawableString traversalList = new
DrawableString(new Position(20, 420));
 label.setColor(Color.blue);
 traversalList.setColor(Color.red);
 myGraph.makeGraph(2,2);
 myGraph.init();
 // search the graph
 int depth = 0;
 int current = myGraph.initSearch(false);
 Vector nextQueues[] = new
Vector[myGraph.getNumOfNodes()];
 nextQueues[depth] = new Vector();
 Position positions[] = new Position[1];
 positions[0] =
myGraph.nodePosition(current);
 myGraph.circle.moveTo(positions);
 myGraph.traceAndMark(current,
traversalList);
 myGraph.setNexts(current,
nextQueues[depth]);
 nextQueues[++depth] = new Vector();
 while (!myGraph.empty(
nextQueues[depth - 1]))
 {
 current = myGraph.getNext(
nextQueues[depth - 1]);
 positions[0] =

6 Journal of STEM Education

myGraph.nodePosition(current);
 myGraph.circle.moveTo(positions);
 myGraph.traceAndMark(current,
traversalList);
 myGraph.setNexts(current,
nextQueues[depth]);
 if (nextQueues[depth - 1].size() == 0)

nextQueues[++depth] = new Vector();
 }
 myGraph.circle.hide();
}

This example demonstrates usage of
the observable data structure MyGraph.
Some snapshots of the animation are
shown in Figures 4-6.

In the snapshots, the algorithm code
occurs on the right hand side of the screen
for easy reference. The top part on the left
side shows the graph configuration at a
given point in time. The nodes that have
been visited are marked by a cross and at
the bottom the visited nodes are added to
the list in order of visitation (in this case
breadth first).

Depth-first Search Algorithm
Depth first search is another way of tra-
versing graphs, which is closely related
to a preorder traversal of a tree.

The algorithm coded in JavaMy:
// Depth First Search
public static void main(String args[])
{
 final Position GRAPH_POSITION =
new
Position(80, 80);
 MyGraph myGraph = new MyGraph(
GRAPH_POSITION, 4, 8, true);
 DrawableString label = new
DrawableString(new Position(20, 390),
“Visited Nodes(Depth First):”);
 DrawableString traversalList = new
 DrawableString(new Position(20,
420));
 label.setColor(Color.blue);
 traversalList.setColor(Color.red);
 myGraph.makeGraph(2,2);
 myGraph.init();
 int current = myGraph.initSearch(true);
 // search the graph
 depthFirstSearch(myGraph,
 current,traversalList);
 myGraph.arrow.hide();
}
private static void
depthFirstSearch(MyGraph myGraph, int
current,DrawableString traversalList)
{

Figure 4: Graph to be searched

Figure 5: Breadth-first Search in progress

Figure 6: Breadth-first Search done

4/3&4 July-December 2003 7

 if (!myGraph.marked[current])
 {
 myGraph.arrow.setDirection(
myGraph.nodePosition(current), true);
 Position positions[] = new Position[1];
 positions[0]=
myGraph.nodePosition(current);
 myGraph.arrow.moveTo(positions);
 myGraph.traceAndMark(current,
traversalList);
 Vector nextQueue = new Vector();
 myGraph.setNexts(current,
nextQueue);
 while (!myGraph.empty(nextQueue))
 {

int next =
myGraph.getNext(nextQueue);

depthFirstSearch(myGraph, next,
traversalList);

myGraph.arrow.setDirection(
 myGraph.nodePosition(current), false);

positions[0] =
myGraph.nodePosition(current);

myGraph.arrow.moveTo(positions);
myGraph.traceAndMark(current,

traversalList);
 }
 }//end if
}

This example uses the observable data
structure MyGraph and the helper class
DrawableString. The resulting animation
is shown in Figures 7-9.

In consistency with the breadth first
search, the algorithm code occurs on the
right hand side of the screen for easy ref-
erence. The top part on the left side shows
the graph configuration at a given point
in time. The nodes that have been visited
are marked by a cross and at the bottom
the visited nodes are added to the list in
order of visitation (in this case depth first).

The above two algorithm animations
can be used in a pedagogically effective
way. They can be used to provide a dy-
namic view of the two algorithms en-
abling the students to get a clear under-
standing of the underlying differences of
the two methods of graph traversals aimed
at achieving the same end result. The in-
structor could use the stepwise feature to
reinforce the taught concepts by asking
the students the sequence of visitation at
each step. More thought provoking ques-
tions such as which traversal method
would be more suitable under what con-

Figure 7: Graph to be Depth-first searched

Figure 8: Depth-first Search in progress

Figure 9: Depth-first Search Done

8 Journal of STEM Education

ditions could follow.

4. Conclusions and future
works

In this paper, we present a visualization
tool designed to aid first-year computer
science students learn Data Structures and
Algorithms. This tool not only lets stu-
dents visualize the commonly used data
structures, but also allows students to
write their own algorithms in a Java simi-
lar language - JavaMy, and observe the
execution of the algorithms.

The effectiveness of the tool is largely
dependent on its usage. It is designed to
be used to supplement traditional instruc-
tion not supplant it. The pedagogical ef-
fectiveness of the tool can be brought out
by the proper use of the software by the
instructors in their lectures as well as en-
couraging students to use it as an aid to
further their understanding of the related
concepts. Creative assignments could be
designed around the software to enhance
its effectiveness.

Because of the time limitation, only
the most commonly used data structures
are implemented in this version of the
software package, which include arrays,
stacks, queues, binary search tree, binary
heap, priority queue and undirected
graph. There are two ways to add more
observable data structures to this software
such as directed graph, weighted graph,
AVL tree, Red Black Tree, AA- tree, splay
tree, hash table, etc. One way is to imple-
ment these data structures in the software.
Another approach would be to develop
and implement a mechanism for the soft-
ware package to recognize the user-de-
fined observable data structures, and
leave the implementation to the user. This
approach will allow users to use their own
observable data structures, hence add
more flexibility to the software.

Another possible future enhancement
for the software is to highlight the execut-
ing command line of the user-defined al-
gorithm file. This would help the user to
better follow the execution of the algo-
rithm.

5. References
1. Morris, John, “Programming Lan-

guages and Data Structures”, http://
swww.ee.uwa.edu.au/~plsd210/ds/
ds_ToC.html

2. Cawsey, Alison, “Data Structures and
Algorithms”,http://www.cee.hw.ac.uk/
~alison/ds98/ds98.html

3. Owens, Brad “CS300 Data Structures
and Algorithms I”, http:/www.cs.twsu.edu/
~bjowens/cs300/

4. Cohen, Edith “CS270: Combinatorial
Algorithms and Data Structures”,
http://www.cs.berkeley.edu/~edith/cs270/

5. Goodrich, Michael T. and Tamassia,
Roberto, “Data Structures and Algo-
rithms in Java”, http://www.cs.brown.edu/
courses/cs016/book/

6. Jarc, Duane J., “Interactive Data
Structure Visualizations”, http://www.seas.
gwu.edu/~idsv/idsv.html

7. The Graphics, Visualization & Us-
ability (GVU) Center at Georgia Tech,
“XTango”, http://www.cc.gatech.edu/gvu/
softviz/algoanim/xtango.html

8. The Graphics, Visualization & Us-
ability (GVU) Center at Georgia Tech,
“Polka”, http://www.cc.gatech.edu/gvu/
softviz/algoanim/xtango.html

9. System Research Centers (SRC) at
Compaq Computer Corporation, “Algo-
rithm Animation at SRC”,
http://www.research.compaq.com/
SRC/zeus/home.html

10. Sun Microsystems, “JavaCC – The
Java Parser Generator”, http:/www.meta
mata.com/javacc/

11. Dann, W., Cooper, S. and Pausch,
R.(2001). Using Visualization to Teach
Novices Recursion. Proceeding on In-
tegrating Technology into Computer
Science Education, 109-112.

12. Gloor, P.A. (1998). User Interface Is-
sues for Algorithm Animation. In
Stasko, J., Dominigue, J., Brown,
M.H. and Price, B. A.(Eds.), Software

Visualization(pp.145-152). Cam-
bridge, Massachusetts: The MIT Press.

13. Jarc, D.J., Feldman, M.B. and Heller,
R.S. (2000). Assessing the Benefits of
Interactive Prediction using Web-
based Algorithm Animation Course-
ware. Proceeding of 31st SIGCSE
Technical Symposium on Computer
Science Education, 377-381.

14. Korhonen, A. and Malmi, L. (2000).
Algorithm Simulation with Automatic
Assessment. Proceedings on Integrat-
ing Technology into Computer Science
Education, 160-163.

15. Pierson, W.C. and Rodger, S.H. (1998).
Web-based Animation of Data Struc-
tures Using JAWAA. Proceeding of
29th SIGCSE Technical Symposium
on Computer Science Education, 267-270.

16. Rößling, G., Schüler, M. and Freisleben,
B. (2000). The ANIMAL Algorithm
Animation Tool. Proceeding on Inte-
grating Technology into Computer
Science Education, 37-40.

17. Shaffer, C.A., Heath, L.S., Yang, J. (1996).
Using the Swan Data Structure Visu-
alization System for Computer Sci-
ence Education. Proceeding of 27th

SIGCSE Technical Symposium on
Computer Science Education, 140-144.

4/3&4 July-December 2003 9

Tarek M.
Sobh re-
ceived the B.Sc.
in Engineering
degree with
honors in Com-
puter Science
and Automatic
Control from

the Faculty of Engineering, Alexan-
dria University, Egypt in 1988, and
M.S. and Ph.D. degrees in Computer
and Information Science from the
School of Engineering, University of
Pennsylvania in 1989 and 1991, re-
spectively. He is currently the Dean
of the School of Engineering at the
University of Bridgeport, Connecti-
cut; the Founding Director of the In-
terdisciplinary Robotics, Intelligent
Sensing, and Control (RISC) labora-
tory; a Professor of Computer Sci-
ence and Computer Engineering; and
the Chairman of the Prototyping
Technical Committee of the IEEE
Robotics and Automation Society.

Tao Chen was a graduate student
in University of Bridgeport’s Com-
puter Science and Engineering De-
partment pursuing an M.S. degree in
computer science from Fall 1999 –
Fall 2000. She obtained her M.S. de-
gree in December 2000. Picture not
available.

Abhilasha Tibrewal received
her B.Sc. and M.Sc. in Home Science
with honors in Textile and Clothing
from Lady Irwin College, Delhi Uni-
versity, India in 1993 and 1995, re-
spectively, and M.S. in Education and
M.S. in Computer Science from Uni-
versity of Bridgeport, CT, USA, in
2000 and 2001 respectively. She is
currently em-
ployed as Vis-
iting Assistant
Professor of
Computer Sci-
ence and Engi-
neering at Uni-
versity of
Br idgepor t .
She is member of ACM, ASEE and
the honor societies of Phi Kappa Phi
and Upsilon Pi Epsilon.

