
Journal of SMET Education26

Parallel Processing Laboratory Experiments for
Undergraduate Students
Muhammad Ali Mohammad Javed Khan Daniel Nyatuame

Tuskegee University

Abstract
This paper explains the approach at
Tuskegee University for consolidat-
ing high performance computing
fundamentals and concepts taught
to undergraduate students through
a series of laboratory experiments.
The computing environment is a
PC-based cluster with a Linux op-
erating system and running MPICH.
A real world problem of grid-gen-
eration for computational fluid dy-
namics has been utilized to bring out
the practical aspects of high perfor-
mance computing through a set of
laboratory experiments.

Introduction
Tuskegee University is in the process of
developing an academic program in the
area of High Performance Computing
(HPC). This effort has been broadly di-
vided into three areas i.e. coursework,
laboratory infrastructure and experiments
to reinforce theoretical concepts. A HPC
course has been developed as a technical
elective for undergraduates from both
science and engineering departments.
This course has a prerequisite of an in-
troductory programming course. Details
of the course are available in [1]. The
laboratory infrastructure is based on com-
mercial off-the-shelf (COTS) PC-server
hardware. The Linux operating system
chosen for the PC-clusters has allowed
access to considerable software resources
in the public domain. This approach has
made HPC an affordable activity at mi-
nority institutions such as Tuskegee Uni-
versity. This paper will restrict itself to
the development of experiments for stu-
dents to understand parallel computations
through hands-on experience.

The primary reason advanced in favor of
parallel processing is performance, which

is normally translated into the single met-
ric ‘total execution time’. This single
metric however consists of a number of
elements e.g. computation time, commu-
nication time etc. Thus impacts of
memory requirements, algorithmic effi-
ciency of computation (numerical) and
parallelization techniques need to be un-
derstood.

A series of experiments have therefore
been developed to identify and under-
stand various aspects of the parallel com-
putational environment. Since the HPC
course is intended not only for computer
science majors, but also targets engineer-
ing majors, the experiments are based on
a simple (yet non-trivial) problem of grid
generation in Cartesian coordinates, a
typical activity in computational engi-
neering approaches in a variety of disci-
plines such as fluid dynamics and struc-
tural mechanics etc.

Objective
This paper explains the approach adopted
at Tuskegee University for developing the
laboratory element of an undergraduate
course in High Performance Computing
(HPC) in a PC-based cluster environment.

Computational Environment
The HPC resource is centered on a
Beowulf cluster computer with 4 server
nodes. Each server node is a SMP with
two 966MHz processors, 256MB of
RAM and 20GB Hard disk. Inter-connect
between the cluster nodes is a100Mbps
Ethernet. The Operating System is Linux
6.2, with several patches for optimal per-
formance on a cluster computer. The clus-
ter computer can be accessed from other
departments in the university.
The software package has both commer-
cial and Open Source software, and con-
figured for optimal performance on a
cluster computer. The commercial pack-

ages include, Portland Group Workstation
3.2 Compilers and MPI-PRO Professional
Communication Library. There are two
other open source implementations of
MPI and PVM. Also included are
ScaLAPAK, PVFS, PBS, SCA Linda,
Dogsled Administration and Monitoring
Tool.

In addition, an effort is underway to build
a cluster computer, using OSCAR (Open
Source Cluster Application Resource)
developed by Oak Ridge National Labs.

Problem Environment
In addition to the typical programming
exercises given in a parallel programming
course, we at Tuskegee decided to use
programming experiments, which firstly
would be more exciting and motivating
to engineering students and secondly
could be expanded upon in a logical man-
ner in subsequent courses. The obvious
choice was selecting a computational
fluid dynamics (CFD) related experiment
since CFD has perhaps had the greatest
influence in the development of HPC.

A large number of CFD techniques are
based on transforming the governing dif-
ferential equations into finite-difference
equations, and a grid of points needs to
be identified in the problem (physical)
domain where the finite-differences are
evaluated. This process referred to as grid
generation is used in other computational
techniques, such as the finite element
method (FEM), as well. Usually, the
physics of the problem dictates a non-
uniform grid e.g. near solid boundaries
or shock-wave regions where extreme
gradients in the physical properties (pres-
sure, temperature, velocity etc) exist, ne-
cessitating a fine mesh in these regions
to resolve the rapid changes. The uneven
grid spacing makes evaluation of the fi-
nite-difference quantities complicated.
One of the approaches is to transform the

3/3&4 July-December 2002 27

non-uniform grid in the physical domain
into a uniform computational grid, and
the flow equations, suitably transformed,
are solved in this ‘computational do-
main’. The first step then in a CFD solu-
tion is the process of ‘grid-generation’.
In fact grid-generation over the years has
spawned into an industry by itself. It was
therefore chosen as the programming ex-
ercise to illustrate aspects of HPC.

The physical problem chosen was one-
dimensional viscous flow in a two dimen-
sional duct. The experiment was to gen-
erate a structured grid with refinement
near the solid boundaries to capture the
velocity gradients normal to the duct sur-
faces. To achieve this an algebraic grid
generation transformation from the com-
putational domain to the physical domain
was to be utilized. The transformation
relationship between the coordinate nor-
mal to the duct in the physical domain
(y) and computational domain (y)is given
by (Ref. 1):

 y = (h)((+ 2)[(+1)/(-1)](y -)/(1 -) - +2)/

 ((2 +1){1+[(+1)/(-1)] (y -)/(1 -)})

where the stretching parameter is re-
lated to the boundary layer thickness
and the distance h between the two plates
by the relation:,

A value of = 1/2 will result in the refin-
ing of the grid near both the walls while
for = 0, the refinement will be only near
one wall.

 In view of the large number of grid points
in a realistic physical problem, visualiza-
tion of the generated grid is an important
element so as to ensure the correctness
of the grid. For this purpose COTS visu-
alization software will be utilized.

Experiments
The first experiment is aimed at making
the students cognizant of the fact that to
ensure optimum efficiency, performance
of the nodes should be comparable. Oth-
erwise overhead penalty in the form of
idle-time would be a consequence. This
experiment requires writing of a parallel
program, which simply executes a loop
on all the processors and notes the com-

 = (1 - /h)-1/2 for: 0 < /h< 1

pute time on each processor in the pres-
ence of un-related activity on the nodes.
This allows detection of possible major
variations in processing time. Since all
nodes are similar, such a variation would
indicate unexpected resource consump-
tion. All unnecessary activities would
therefore have to be stopped on the clus-
ter nodes before carrying out the subse-
quent laboratory experiments.

It is generally presumed that parallelizing
a serial program would result in reduc-
tion of total execution time proportional
to the number of processors used. How-
ever, this is not always true. In applica-
tions with a high content of file I/O, there
may be negligible decrease in total ex-
ecution time despite the parallelization of
the problem.

The second experiment is therefore de-
signed to show the effect of I/O on the
total execution time. The students will be
required to write a serial program, which

generates grid-points and out-
puts the data in text or binary
format, as required.

The third experiment is the
parallelization of the above, to

determine the effect of I/O and computa-
tion loads on the execution time of a
parallelized program. Applications with

a high content of inter-pro-
cess communication may not
benefit significantly from the
parallelization. Students
would expect considerable re-

duction in program execution times after
parallelizing. However, the results of their
experiments will be counter-intuitive. The
reason for this of course is that the time
for writing out data to a text file is very
high compared to the computation time
of the grid generation algorithm chosen
for the experiment. Thus, reduction in the
computation time due to parallelization
does not significantly impact the total
program execution time. The students will
be asked to analyze this apparent contra-
diction. Hints could be given to the stu-
dents to guide them in the right direction,
but they would be required to individu-
ally and collectively analyze the problem,
and determine a course of action to col-
lect the relevant data. This entails deter-
mining the computation time in addition
to the total execution time, and would
require modification of the codes to cap-

ture these. Finally, to capitalize on the
benefits of parallelization, the students
would be expected to use binary output
of data.

Fig. 1 which shows the computation times
and overheads of the serial and
parallelized program, with respect to the
number of processors the parallel pro-
gram is executed on, captures basic char-
acteristics of parallelization. These times
are plotted for the three cases of text-file
output, binary-file output and no-file out-
put. Overhead defines as the difference
between the total execution time and com-
putation. It includes inter-process com-
munication and file I/O overheads. While
the computation time remains the same
in all the three cases, the overheads with
text output are an order of magnitude
higher than the overheads with binary file
output. However, the overheads for binary
file output are slightly more than the
overheads without file output.

Ideally, the computation time should de-
crease by half when the number of pro-
cessors is increased from one to two. Fig.
1 shows a considerably higher decrease.
The reason for this apparent anomaly,
which the students will be expected to
comment on is that wall-time rather than
CPU usage time is being clocked, and for
the serial program, the wall-time for com-
putation code includes the time during
which the computation code is interrupted
to perform administrative activities of the
operating system. This is a depiction of
what students will encounter in real life.
Increase in overheads with parallelization
is also observable in Fig. 1. This increase
is due to the inter-process communication
and MPI layer. The decrease in computa-
tion time should be significant enough to
compensate for this increase in overhead.
Insensitivity of the computation time with
the increase in the number of processors
can be seen in Fig. 1, which is also
counter-intuitive. This characteristic of
the computation time has been purposely
built into the program logic by requiring
that it allocates a maximum of 500,000
grid points per processor. For the total
number of grid points of 1,000,000 as in
this example, no allocation is therefore
made to the third and subsequent proces-
sors. For much larger problems this inef-
ficiency is eliminated as is seen in the next
experiment underscoring the importance
of load balancing amongst the processors.

Journal of SMET Education28

The fourth experiment explores the effect
of computational intensity (e.g. flow-field
calculations) per grid point. This experi-
ment requires execution of the serial and
parallel programs several times with a
range of parameters. Figs. 2 and 3 bring
out the effect of low and high computa-
tional intensity per grid-point computa-
tion. When the computation per grid-point
is low, there is an increase in total execu-
tion time despite the decrease in compu-
tation time. This is due to the increase in
parallel computation overheads. With
high computation per grid-point, the de-
crease in computation time is enough to
compensate for the increase in
parallelizing overhead. Figs. 4 and 5 show
that, with bigger problem sizes, the per-
formance is better. However, an asymp-
totic behavior is observable signifying
diminishing returns.

Summary
 The teaching of HPC can be reinforced
with appropriately designed laboratory
experiments based on ‘real life’ applica-

tions. The problem of CFD grid-genera-
tion has been used as basis to bring out
certain minimal but essential aspects of
HPC. The experiments designed for under-
graduate students at Tuskegee University
lucidly bring out the need to understand:

(a) Execution times of the various parts
of the code prior to investing into
parallelization of the problem
(b) Effect of overheads on performance
(c) Influence of various parameters of a
problem

An important element of HPC i.e. load
balancing has not been addressed as part
of present design due to the inherent uni-
formity of the structured grid. For this
class of problem, the concept of load bal-
ancing would have required the next logi-
cal step of solving the flow physics equa-
tions on the computational grid. This as-
pect is planned for implementation at a
later stage.

Figure 1.

3/3&4 July-December 2002 29

References
1. Ali, M., Development of a High Per-
formance Computing Course With Low
Cost Infrastructure, The Symposium on
Computing at Minority Institutions,
ADMI 2002, May 30th, 2002, Stetson
University, Florida

2. Anderson, D. A., et al., Computational
Fluid Mechanics and Head Transfer,
McGraw Hill, 1984.

3. Pacheco, P. S., Parallel Programming
with MPI, Morgan Kaufmann Publishers,
1997

4. Wilkinson, B., Parallel Programming:
Techniques and Applications using Net-
worked Workstations and Parallel Com-
puters, Prentice Hall, 1999.

5. Foster, I., Designing and Building Par-
allel Programs, Addison Wesley, 1995

6. Snir M., et al., MPI – The Complete
Reference, The MIT Press, 2001

7. Gropp, W., et al., Using MPI: Portable
Parallel Programming, 2nd Ed., The MIT
Press, 1999

Figure 2.

Figure 3.

Figure 4.

Journal of SMET Education30

Muhammad Ali is Assistant
Professor in the Dept of Computer Sci-
ence, Tuskegee University. His area of
interest is High
Performance
Computing, fo-
cusing on de-
veloping un-
d e rg r a d u a t e
courses and ex-
p e r i m e n t s ,
based on low
cost laboratory
infrastructures. This is of significance
to smaller institutions, including mi-
nority institutions. He received his
DSc(Computer Science) from George
Washington University, USA, and
MSc(Electronic Eqpt Design) from
Cranfield Institute of Technology, UK.
He has a BE(Avionics) degree from
Karachi University, Pakistan. He is
member of Council for Undergradu-
ate Research, and IEEE.

Mohammad Javed Khan is
an Associate Professor in the Aero-
space Science Engineering Depart-
ment at Tuske-
gee Univer-
sity. He has a
BE in Aero-
space Engi-
neering from
Karachi Uni-
versity, Paki-
stan, an MS in
Aeronautical
Engineering from the United States
Air Force Institute of Technology and
a PhD in Aerospace Engineering from
Texas A&M University. His research
focus is fluid mechanics, aircraft de-
sign and introduction of innovative
and motivating learning techniques in
the classroom. He is a fellow of the
Royal Aeronautical Society, UK and
member of the American Institute of
Aeronautics & Astronautics and
American Society of Engineering
Education.

Daniel Kwame Nyatuame
received the B.S. E.E degree from the
University of Science and Technology,
Kumasi, Ghana,
in 1992, the
MBA MIS de-
gree from the
Vrije Univers-
iteit Brussel,
Brussels, Bel-
gium 1997, and
is currently pur-
suing M.S. de-
gree in Electrical Engineering at
Tuskegee University, Tuskegee, AL
since 2001.

He worked as Research Assistant with
the Department of Computer Science,
Tuskegee University, during Summer
2001 and 2002. He was involved in re-
search on High Performance Comput-
ing (HPC). Daniel was part of the team
that set up a HPC infrastructure based
on a Beowulf Linux Cluster and was
involved in installation and configu-
ration of various software as well as
writing programs to use for perfor-
mance analysis on the cluster.

Figure 5.

