
4/1&2 January-June 2003 43

An Architecture for Distributed Applications on
the Internet: Overview of the Microsoft®.NET Framework
 Bryan Barnett Mary Kirtland Mythreyee Ganapathy

Microsoft Corporation

Introduction
One of today’s most pressing comput-

ing challenges is application integration:
taking different applications running on
different operating systems built with dif-
ferent object models using different pro-
gramming languages and integrating
them into robust systems for supporting
critical business processes or scientific
research programs. Application develop-
ers increasingly want and need to reach
beyond tightly-coupled client-server en-
vironments to access functionality on re-
mote systems that are very different in
design and implementation, and which
are owned and managed by other organi-
zations.

Because of its ubiquity, the Internet
is driving this demand. Creating a viable
architecture for Web-based component
interaction is one of the foremost chal-
lenges of distributed computing today,
and is a major objective of Microsoft’s
.NET Framework. The .NET Framework
is a component of Windows that provides
a programming model and runtime for
XML Web services, Web applications,
and smart client applications. The .NET
Framework is a key part of Microsoft
.NET, software that connects information,
people, systems and devices. Microsoft’s
goal is to support creation of a standards-
based architecture for distributed appli-
cations on the Internet. To enable easy ap-
plication development and deployment,
.NET provides a specially adapted toolset
and runtime environment for creating and
running highly distributed applications.

This paper describes the essential
components of the new .NET Framework,
including the common language runtime,
base class libraries, the services frame-
work, and the programming models for
building and integrating applications over
the Web. We will examine these compo-
nents in general, but take a special look
at .NET as a connected architecture for

building and supporting Web-based ap-
plications of the kind now commonly
called “Web services”.

A First Look at
XML Web Services

Broadly speaking, an XML Web ser-
vice is simply a URL-addressable re-
source that programmatically returns in-
formation to clients who want to use it.
One important feature of XML Web ser-
vices is that clients don’t need to know
how a service is implemented. In this
sense XML Web services represent black-
box functionality that can be reused with-
out worrying about how the service is
implemented. XML Web services pro-
vide well-defined interfaces, sometimes
called contracts that describe the services
provided. Developers can assemble ap-
plications using a combination of remote
services, local services, and custom code.
For example, a company might assemble
an online store using an internal authen-
tication service, a third-party personaliza-

Figure 1. XML Web services Application Model

tion service to adapt Web pages to each
user’s preferences, a credit-card process-
ing service for billing purposes, a sales
tax service to calculate tax on each trans-
action, package-tracking services from
each shipping company, an in-house cata-
log service that connects to the company’s
internal inventory management applica-
tions, and a bit of custom code to make
sure that their store stands out from the
crowd. Figure 1 shows a model that il-
lustrates how XML Web services can be
assembled to create fully functional dis-
tributed Web applications.

XML Web services are, at their core,
simply a component technology for the
Internet. Unlike current component tech-
nologies, however, XML Web services do
not use object model-specific protocols
such as DCOM, RMI, or IIOP that require
specific, homogeneous infrastructures on
both the client and service machines.
While implementations tightly coupled to
specific component technologies are per-
fectly acceptable in a controlled environ-
ment, they become impractical on the

Journal of SMET Education44

Web. As the set of participants in an inte-
grated business process changes, and as
technology changes over time, it becomes
very difficult to guarantee a single, uni-
fied infrastructure among all participants.
XML Web services take a different ap-
proach; they communicate using ubiqui-
tous Web protocols and data formats such
as SOAP and XML. Any system support-
ing these protocols will be able to sup-
port XML Web services.

Furthermore, a XML Web service con-
tract describes the services provided in
terms of the messages the XML Web ser-
vice accepts and generates rather than
how the service is implemented. By fo-
cusing solely on messages, the XML Web
services model is completely language,
platform, and object model-agnostic. A
XML Web service can be implemented
using the full feature set of any program-
ming language, object model, and plat-
form. A XML Web service can be con-
sumed by applications implemented in
any language for any platform. As long
as the contract that explains the service’s
capabilities and the message sequences
and protocols it expects is honored, the
implementations of XML Web services
and XML Web service consumers can
vary independently without affecting the
application at the other end of the con-
versation.

The minimum infrastructure required
by the XML Web services model is pur-
posefully low to help ensure that XML
Web services can be implemented on and
accessed from any platform using any
technology and programming language.
The key to XML Web service
interoperability is reliant solely on Web
standards. However, simply agreeing that
XML Web services should be accessed
through standard Web protocols is not
sufficient to make it easy for applications
to use XML Web services. XML Web ser-
vices become easy to use when an XML
Web service and XML Web service con-
sumer can rely on standard ways to rep-
resent data and commands, to represent
XML Web service contracts, and to fig-
ure out the capabilities a XML Web ser-
vice provides. Under the auspices of the
W3C (World Wide Web Consortium) and
other standards bodies, Microsoft and
other companies have worked to define
and support a variety of basic standards
for interoperability and discoverability of

XML Web services.
XML is the obvious choice for defin-

ing a standard yet extensible language to
represent commands and typed data.
While rules for representing commands
and typed data using other techniques
(such as encoding as a query string) could
be defined, XML is specifically designed
as a standard meta-language for describ-
ing data. The Simple Object Access Pro-
tocol (SOAP)1 is rapidly becoming the
industry standard for using XML to rep-
resent data and commands in communi-
cation among Web service components.
XML is also the basis of the XML Web
services Description Language (WSDL)2

a grammar for documenting XML Web
service contracts. Universal Description,
Discovery and Integration (UDDI)3 de-
scribes a standard way for clients to lo-
cate Web services, while WS-Inspection4

(which embraces the earlier Disco stan-
dard) provides a standard mechanism for
discovery from a provider of detailed in-
formation about available services.

A simple way to understand the roles
of these standards is by analogy to the in-
formation sources that we use to take ad-
vantage of the services provided by a lo-
cal business like a bank. UDDI is like the
yellow pages where one can locate busi-
nesses of a particular kind. WS-Inspec-
tion/Disco is like a sign in a bank’s win-
dow listing the specific services a particu-
lar business offers. WSDL is like the de-
posit slip that specifies what information
is required (and in what format) to con-
summate a transaction with the bank, and

SOAP is the protocol that defines a for-
mat for the electronic deposit slip trans-
mitted to the bank. The goal of these stan-
dards as a set is to allow software clients
to easily find, understand, and interact
with services on the Internet without the
need for human research of printed docu-
mentation and extensive hand coding of
each relationship between client and ser-
vice.

Standards like SOAP, WSDL, UDDI
and WSInpection help developers, since
they do not need to understand and imple-
ment different ways to access each XML
Web service that they use. Even better,
because they are documented and widely
supported standards, well-tested, high-
performance infrastructure supporting
these standards can be supplied by devel-
opment platforms, greatly simplifying the
entire development process. All these
standards are supported by Microsoft and,
to the extent that they are complete and
finalized, by the .NET Framework.

The Microsoft .NET
Framework

The goal of the Microsoft .NET
Framework is to make it easy to build dis-
tributed applications, especially XML
Web services, on a wide variety of plat-
forms. The Framework specification has
been accepted by the standards section of
the European Computer Manufacturer’s
Association (ECMA), thus permitting
others to create their own implementa-
tions.5

Figure 2. Microsoft.NET Framework Architecture

4/1&2 January-June 2003 45

Figure 2, on the previous page,
shows the Microsoft .NET Framework ar-
chitecture. Built on top of operating sys-
tem services is a common language
runtime (CLR) that manages the needs of
running code written in any supported
programming language. This runtime
supplies many services that help simplify
code development and application de-
ployment while also improving applica-
tion reliability and security. The .NET
Framework also includes a set of class
libraries that developers can use from any
supported programming language. Above
that sit various application programming
models that provide higher-level compo-
nents and services targeted specifically at
developing Web sites and XML Web ser-
vices. Let’s take a closer look at each of
these layers.

Common Language Runtime
The CLR, sometimes referred to as a

“managed execution environment”, loads
and runs code written in any runtime-
aware programming language. Code that
targets the runtime is called managed
code because the runtime itself assumes
responsibility for tasks like creating ob-
jects, making method calls, enforcing se-
curity policies and performing garbage
collection.

The architecture of the CLR is built
on a two stage compilation process.
Source code is compiled to an intermedi-
ate language, imaginatively named
Microsoft Intermediate Language or
MSIL. This intermediate code is then
compiled at runtime to the target hard-
ware platform by a JIT.6 Thus all code
running in the CLR is ultimately native
code, and the only performance impact
is the small latency due to compilation
the first time an object is loaded into
memory.

One of the most important features of
the CLR is cross-language integration
which allows complete language
interoperability among any languages tar-
geting the runtime.7 To achieve this
interoperability, the runtime makes use of
a new common type system capable of
expressing the semantics of most mod-
ern programming languages. The com-
mon type system defines a standard set
of types and rules for creating new types.
The runtime understands how to create

and execute these types. Compilers and
interpreters thus use runtime services to
define types, manage objects, and make
method calls instead of using tool or lan-
guage-specific methods.

The primary design goal for the type
system was to enable deep multi-language
integration. Code written in one language
can now inherit implementation from
classes written in another language; ex-
ceptions can be thrown from code writ-
ten in one language and caught in code
written in another; and operations such
as debugging and profiling work
seamlessly regardless of the languages
used to write the code. This means that
developers of reusable class libraries no
longer need to create versions for each
programming language or compiler, and
developers using class libraries are no
longer limited to libraries developed for
the programming language they are us-
ing.

Language interoperability is, however,
only part of the goal of the .NET runtime.
Full component interoperability also re-
quires that adequate metadata describing
each component be available to other
components at runtime. Previous archi-
tectures like COM or CORBA store this
metadata in external files that must be
maintained separately from the compo-
nent itself. The .NET Framework makes
a significant departure from these earlier
schemes by incorporating all metadata
into the component package itself, mak-
ing components completely self-describ-
ing. As a result, separate configuration
information does not need to be deployed
to identify developer requested service
attributes. And best of all, since the
metadata is generated from the source
code during the compilation process and
stored with the executable code, it is never
out of sync with the executable.

In addition to improvements in de-
ploying individual components, the
Microsoft .NET Framework defines an
application deployment model that ad-
dresses the complexities of application
installation and DLL versioning (com-
monly known as “DLL Hell”). Address-
ing this problem, .NET introduces the
notion of an assembly. An assembly is a
group of resources and types, along with
metadata about those resources and types
that is deployed as a unit. The metadata
is called an assembly manifest and in-

cludes information such as a list of types
and resources visible outside the assem-
bly. The manifest also includes informa-
tion about dependencies, such as the ver-
sion of the assemblies used when the as-
sembly was built. Developers can specify
versioning policies to indicate whether
the runtime should load the latest version
of a dependent assembly installed on the
system, a specific version, or the version
used at build time.

Though it has always been possible
for multiple copies of a software compo-
nent to reside on the same system, in gen-
eral only one of these copies can be reg-
istered with the operating system or
loaded for execution. The policy for lo-
cating and loading components is global
to the system. The .NET CLR adds the
infrastructure necessary to support per-
application policies that govern the locat-
ing and loading of components, generally
referred to as side-by-side deployment. 8

In this scheme, assemblies can be private
to an application or shared by multiple
applications. Multiple versions of an as-
sembly can be deployed on a machine at
the same time. Application configuration
information defines where to look for as-
semblies, thus the runtime can load dif-
ferent versions of the same assembly for
two different applications that are running
concurrently. This eliminates issues that
arise from incompatibilities between
component versions, improving overall
system stability. If necessary, administra-
tors can add configuration information,
such as a different versioning policy, to
assemblies at deployment time, but the
original information provided at build
time is never lost.

Because assemblies are self-describ-
ing, no explicit registration with the op-
erating system is required. Application
deployment can be as simple as copying
files to a directory tree. Configuration
information is stored in XML files that
can be edited by any text editor.

Finally, the runtime also supplies in-
tegrated, pervasive security services to
ensure that unauthorized users cannot ac-
cess resources on a machine and that code
cannot perform unauthorized actions. The
.NET Framework provides both code ac-
cess security and role-based security.
With code access security, developers can
specify the required permissions their
code needs to accomplish work. For ex-

Journal of SMET Education46

ample, code may need permission to write
a file or access environment variables.
This information is stored at the assem-
bly level, along with information about
the identity of the code. At load time and
on method calls, the runtime verifies that
the code can be granted the permissions
it has asked for. If not, a security viola-
tion is reported. Policies for granting per-
missions, known as trust policies, are es-
tablished by system administrators, and
are based on evidence about the code such
as who published the code and where it
was obtained from, as well as the iden-
tity and requested permissions found in
the assembly. Developers can also specify
permissions they explicitly don’t want
granted, to prevent malicious use of their
code by others. Programmatic security
checks can be written even if the permis-
sions required depend on information that
isn’t known until runtime.

In addition to code access security, the
runtime supports role-based security,
which builds on the same permissions
model as code access security, except that
the permissions are based on user iden-
tity rather than code identity. Roles rep-
resent categories of users and can be de-
fined at development or deployment time.
Policies for granting permissions are as-
signed to each defined role. At runtime,
the identity of the user on whose behalf
the code is running is determined. The
runtime determines what roles the user is
a member of and then grants permissions
based on those roles.

Before looking at programming mod-
els in the Microsoft .NET Framework,
let’s take a moment to look at the services
it provides atop the CLR.

The Base Class Libraries
As you may recall from Figure 2, on top
of the common language runtime is the
base framework, consisting of a large li-
brary of base classes which can be called
from any supported programming lan-
guage. Moreover, because learning class
libraries is a major part of learning most
any modern programming language, the
.NET Framework has organized the base
classes into a set of prescribed
namespaces to reduce the learning curve
for developers. There is not space here to
review even a small part of the base class
libraries, but after noticing the most im-

portant groups of classes, we’ll look a bit
more closely at a particular set of classes
that are of particular importance to XML
Web services.

Some of the key base class libraries
include libraries that developers would
expect in a standard language library, such
as collections, input/output, string, and
numerical classes. In addition, the base
class library provides classes to access
operating system services such as graph-
ics, networking, threading, globalization,
and cryptography. The base framework
also includes classes that development
tools can use, such as debugging and pro-
filing services.

These classes are important across all
types of programming and applications.
But one set of classes are particularly
important to Web-based applications that
most often need access to data across dif-
ferent platforms and environments. With
XML rapidly emerging as the standard for
this kind of data-interchange, Microsoft
has thoroughly baked the power of XML
into the .NET Framework data access
classes.

To provide data access, the services
framework includes the ActiveX® Data
Objects (ADO) class library, referred to
as ADO.NET. This library provides high-
performance stream APIs for connected,
cursor-style data access, as well as a dis-
connected data model more suitable for
returning data to client applications. Fig-
ure 3 illustrates the ADO.NET architec-
ture and shows that any data—regardless
of how it is actually stored—can be ma-

Figure 3. ADO.NET Architecture

nipulated as XML or relational data,
whichever is most appropriate for the
application at a given point in time.

One of the major innovations of
ADO.NET is the introduction of the
Dataset. More than just a disconnected
record set, a Dataset in the .NET Frame-
work is an in-memory data cache provid-
ing a relational view of retrieved data that
can be manipulated using powerful com-
ponents from the base libraries. Datasets
know nothing about the source of their
data—the Dataset may be created and
populated programmatically or by load-
ing data from a data store. No matter
where the data comes from, it is manipu-
lated using the same programming model
and uses the same underlying cache.

ADO.NET components have been de-
signed to separate data access from data
manipulation. Data access components
include the Connection, Command,
DataReader, and DataAdapter objects,
and are used to fill data sets from data
stores and to resolve changes to the data
set back to the store. The .NET data pro-
vider is designed to be lightweight, cre-
ating a minimal layer between the data
source and your code, increasing perfor-
mance without sacrificing functionality.

Another critical innovation in
ADO.NET is strong support for handling
XML data. In ADO, all data can be
viewed as XML, and just as DataReaders
XmlReaders expose efficient stream ac-
cess to XML Data. Developers use a
DataNavigator for scrolling and editing
an in-memory XmlDocument.

DataNavigators are functionally

4/1&2 January-June 2003 47

equivalent to the W3C Document Object
Model (DOM), but are more efficient and
provide an object model that maps nicely
to the relational data view.
DataNavigators support XPath syntax for
navigating the data stream. ADO+ also
provides an XMLDocument class for
developers who want to continue to use
the DOM as an object model for XML
rather than the more efficient
DataNavigator model.

Since all data can be viewed as XML,
developers can take advantage of trans-
formation and validation services for any
data which are provided directly through
the ADO.NET class libraries. ADO.NET
supports schemas defined via DTDs,
XSD, or XDR. The .NET Framework
provides a specific transformation com-
ponent that supports the W3C XSL Trans-
formations (XSLT) specification, and
also provides a validation engine that
uses XML Schemas to validate an
XmlReader.

Programming and
Application Models in .NET

The ultimate reason for having a dis-
tributed application architecture is, of
course, to be able to create applications.
In today’s world there are at least two
basic types of applications, which have,
traditionally been programmed in some-
times very different ways.

On the one hand are traditional client
applications with complete GUI inter-
faces, programmed using either com-
mand line compilers or visual develop-
ment environments to create executable
packages for local deployment. On the
other hand Web programming combines
at least three different elements: a client
side interface done through HTML, cli-
ent-side scripting interwoven into the
presentation code, and server side script-
ing in any of a number of different lan-
guages or implementation models from
ASP to CGI scripting.

Though we have heretofore focused
on .NET as an architecture for Internet-
based Web applications, the new platform
programming model supports both stan-
dard programming of client applications
and Web application programming. But
the new architecture seeks to simplify the
developer’s learning curve and task by
offering a unified visual programming

model that is the same across both do-
mains. Let’s take a brief look at program-
ming in each of the two.

Windows® Forms
Developers writing client applications for
Windows can use what is now called the
Win Forms application model which
combines the best features of the popular
forms-based visual programming style of
Visual Basic® with the full power of tra-
ditional MFC user interface classes. In
addition Win Forms provides full access
to existing ActiveX controls and new fea-
tures of Windows® 2000 or Windows®
XP, such as transparent, layered, and
floating windows.

Win Forms also takes advantage of the
.NET Framework runtime to provide full
security and ease of deployment. The
framework security model can safely ex-
ecute applications and components on
client machines provided they are writ-
ten using the Win Forms model or used
from a Win Forms application. At the
same time, applications can be configured
to use the versions of shared components
they were built and tested with, rather
than using whatever component versions
happen to be installed on the client ma-
chine, improving application reliability
and eliminating one of the major causes
of application support calls: incompatible
versions of user interface controls and
other shared components.

Web Applications
Web applications built on the .NET

Framework share the WinForms pro-
gramming model, again based on the
popular forms-oriented visual program-
ming style of Visual Basic®. But here
there is a distinct application model,
called ASP.NET, in which a Web appli-
cation is seen as just a set of URLs rooted
at some base URL. Thus it encompasses
both Web applications that generate pages
for display in a browser and XML Web
services. Like WinForms, ASP.NET takes
advantage of the common language
runtime and services framework to pro-
vide a reliable, robust, scalable hosting
environment for Web applications.
ASP.NET also benefits from the common
language runtime assembly model to sim-
plify application deployment. In addition,
it provides services to simplify applica-

tion development with support for things
like state-management.

At the core of ASP.NET is the HTTP
runtime, a high-performance runtime for
processing HTTP requests that is respon-
sible for processing all incoming HTTP
requests, resolving the URL of each re-
quest to an application, and then dispatch-
ing the request to the application for fur-
ther processing. The HTTP runtime is
multithreaded and processes requests
asynchronously, so it cannot be blocked
by bad application code from processing
new requests. Furthermore, the HTTP
runtime assumes that failures will occur,
so it is engineered to automatically re-
cover as best it can from access violations,
memory leaks, deadlocks, and so on. Bar-
ring hardware failure, the runtime aims
for 100 percent availability.

ASP.NET uses the.NET Framework
deployment model based on assemblies,
thus gaining all its benefits such as
XCOPY deployment, side-by-side de-
ployment of assemblies, and XML-based
configuration. ASP.NET also supports
live updating of applications. An admin-
istrator doesn’t need to shut down the Web
server or even the application to update
application files. Application files are
never locked, so they can be overwritten
even when the application is running.
When files are updated, the system grace-
fully switches over to the new version.
The system detects file changes, launches
a new instance of the application using
the new application code, and begins rout-
ing incoming requests to that application.
When all outstanding requests being pro-
cessed by the existing application in-
stance have been handled, that instance
is shut down.

Because the Web is a fundamentally
stateless model with no correlation be-
tween HTTP requests, writing Web ap-
plications can be especially difficult, with
programmers having to devise a variety
of ad hoc mechanisms to maintain state
information. ASP.NET enhances the state
management services introduced by ASP
to provide three types of state to Web ap-
plications: application, session, and user.
Application state is specific to an appli-
cation instance and is not persisted. Ses-
sion state is specific to a user session with
the application. In ASP.NET, session state
is stored in a separate process and can
even be configured to be stored on a sepa-

Journal of SMET Education48

rate machine. This makes session state
usable when an application is deployed
on a Web farm. User state resembles ses-
sion state, but generally does not time out
and is persisted. Thus user state is useful
for storing user preferences and other
personalization information. All the state
management services are implemented as
HTTP modules, so they can be added or
removed from an application’s pipeline
easily. If additional state management
services are required beyond those sup-
plied by ASP.NET, they can be provided
by a third-party module.

ASP.NET also provides caching ser-
vices to improve performance. An output
cache saves completely rendered pages,
and a fragment cache stores partial pages.
Classes are provided so applications,
HTTP modules, and request handlers can
store arbitrary objects in the cache as
needed. Now let’s take a quick look at
the two higher-level programming mod-
els that build on the ASP.NET program-
ming model: ASP.NET Web Forms and
ASP.NET XML Web services.

Web Forms
Just as WinForms brings the productiv-
ity benefits of a forms-based program-
ming model to client applications in any
.NET supported language; WebForms
brings the same model to Web applica-
tions, thus providing .NET with a unified
programming model across all applica-
tion domains and languages. Web Forms
support traditional ASP syntax that mixes
HTML content with script code, but it also
promotes a more structured approach that
separates application code from user in-
terface presentation layer. Web Forms
controls are responsible for generating the
user interface, typically in the form of
HTML. ASP.NET comes with a set of
Web Forms controls that mirror the typi-
cal HTML user interface widgets (includ-
ing listboxes, text boxes, and buttons),
and an additional set of Web controls that
are more complex (such as calendars and
ad rotators). One important feature of
these controls is that they can be written
to adapt to client-side capabilities; the
same pages can be used to target a wide
range of client platforms and form fac-
tors. In other words, Web Forms controls
can detect the level of the client that is

hitting a form and return an appropriate
user experience—maybe HTML 3.2 for
a down-level browser and Dynamic
HTML for Internet Explorer 5.0. The
separation of code and content enables
ASP.NET pages to be dynamically com-
piled into managed classes for fast per-
formance. Each incoming HTTP request
is delivered to a new page instance so that
developers do not need to be concerned
about thread safety in their code.

ASP.NET for XML Web
services

The ASP.NET XML Web services in-
frastructure provides a high-level pro-
gramming model for building XML Web
services with ASP.NET. While not re-
quired for building a XML Web service
in .NET, with ASP.NET developers don’t
need to understand the specifics of HTTP,
SOAP, WSDL, or any other specifications
for XML Web services in order to use the
programming model. You create a XML
Web service with ASP.NET by authoring
a file with the extension .asmx and de-
ploying it as part of a Web application.
The ASMX file either contains a refer-
ence to a managed class defined else-
where or the class definition itself. The
class is derived from the WebService class
supplied by ASP.NET. Public class meth-
ods are exposed as XML Web service
methods simply by marking them with the
WebMethod attribute. These methods can
then be invoked by sending HTTP re-
quests to the URL of the ASMX file. This
is all there is to it. ASP.NET inspects the
class metadata to automatically generate
a WSDL file when requested by the caller.

Clients may submit service requests
via SOAP, HTTP GET, and HTTP POST.
Conventions are defined for encoding
methods and parameters as query strings
for HTTP GET and form data for HTTP
POST. The HTTP GET and HTTP POST
mechanisms are not as powerful as SOAP,
but they enable clients that don’t support
SOAP to access a XML Web service.

The ASP.NET XML Web services
model assumes a stateless service archi-
tecture, because Stateless architectures
are generally more scalable than stateful
architectures. Thus, each time a service
request is received, a new object is cre-
ated, the request is converted into a
method call, and the object is destroyed

once the method call returns. Services can
use the ASP.NET State Management ser-
vices if they need to maintain state across
requests. XML Web services based on
ASP.NET run in the Web application
model, so they get all the security, deploy-
ment, and other benefits of that model.

Conclusion
As technology moves forward into the

era of rich connectivity across a wide
range of devices, there is a growing need
for architectures that can support build-
ing large-scale loosely-coupled systems.
XML Web services provide a simple, flex-
ible, standards-based model for binding
applications together over the Internet that
takes advantage of existing infrastructure
and relies on well established protocols
like HTTP. Web applications can be eas-
ily assembled with locally developed ser-
vices and existing services, irrespective
of the platform, development language,
or object model used to implement any
of the constituent services or applications.

But more than just an architecture for
commercial application development,
Microsoft’s new platform technology of-
fers many appealing features for teach-
ing about computing. Microsoft .NET
supports many different computing lan-
guages, allowing students and instructors
to choose the language most appropriate
to their immediate learning goals. And
using utilities like ildasm.exe that come
with the .NET Framework SDK, students
and instructors can inspect intermediate
language code directly to understand lan-
guage and compiler design issues. It fea-
tures a runtime environment that manages
memory and provides strong security and
easy deployment, so students can avoid
many frustrating errors and begin to cre-
ate satisfying real-world applications
much sooner. The .NET Framework pro-
vides a single programming model across
conventional and Web applications, so
students can learn new application mod-
els without having to struggle learning
new programming models as well. And
because support for things like network-
ing and XML are baked into the founda-
tion class libraries, students can concen-
trate on building distributed applications
to solve problems without having to learn
or create necessary “plumbing code”. For

4/1&2 January-June 2003 49

all these reasons and many more, .NET
may ultimately offer as much to teaching
about computing as it does to the world
of commercial application development.

1 See full documentation and history at:
http://www.w3.org/2000/xp/

2 See full documentation and history at:
http://www.w3.org/TR/wsdl

3 See full documentation and history at:
http://www.uddi.org/” http://www.uddi.org/ .
The UDDI project creates a platform-in-
dependent, open framework for describ-
ing services, discovering businesses, and
integrating business services using the
Internet, as well as an operational regis-
try that is available today.

4 WS-Inspection is a specification jointly
proposed by Microsoft Corporation and
IBM. See: http://www-106.ibm.com/
deve-loperworks/web/l ibrary/ws-
wsilspec.html” http://www-106.ibm.com/
deve loperworks /web/ l ib ra ry /ws-
wsilspec.html .

5 In December 2000, C# and the Com-
mon Language Infrastructure were ac-
cepted by ECMA. For more information
see:“http://www.microsoft.com/Press-
P a s s / p r e s s / 2 0 0 1 / D e c 0 1 / 1 2 -
13ECMApr.asp” http://www.microsoft.com/
PressPass /p re s s /2001 /Dec01 /12 -
13ECMApr.asp . Microsoft Corporation
itself is sponsoring one of the first imple-
mentations of the .NET framework on a
non-windows platform. In partnership
with Corel, Inc., Microsoft Corporation
will deliver an implementation on
FreeBSD UNIX and will make complete
source code available for teaching and
research purposes. See http://
www.microsoft.com/PressPass/press/
2001/Jun01/06-27CorelPR.asp” http://
www.microsoft.com/PressPass/press/
2001/Jun01/06-27CorelPR.asp .

6 The JIT compiler is a pluggable com-
ponent of the CLR architecture, thus al-
lowing the development of specialized
compilers to be optimized for particular
tasks.

7 Project 7 was a research project sup-
porting academic researchers targeting a

variety of academic languages at the .NET
CLR. For more information see: http://
research.microsoft.com/project7.net/
project_7.htm” http://research.microsoft
.com/project7.net/project_7.htm .

8 The CLR also permits the execution of
unmanaged code. Under these circum-
stances things are slightly more compli-
cated because the CLR, by definition,
does not have the ability to determine or
enforce appropriate policies for such
code.

Mary Kirtland
Mary Kirtland is the author of Design-
ing Component-based Applications
(Microsoft Press, 1998). She has also
authored technical articles as part of
the MSDN Architecture team which
produces guidance for developers
who design applications using
Microsoft technologies.

Bryan Barnett
Bryan Barnett is a Product Manager
in the Developer Tools and Platforms
Division at Microsoft. He was for-
merly a technology investment ana-
lyst with Vulcan Northwest, Inc.

Mythreyee Ganapathy
Mythreyee Ganapathy is a Technical
Product Manager in the Developer
Tools and Platforms Division at
Microsoft. She was formerly a Tech-
nology Consultant for PriceWater-
house-Coopers LLP.

Microsoft, Encarta, MSN, and Windows
are either registered trademarks or trade-
marks of Microsoft Corporation in the
United States and/or other countries.

Reprinted with permission from Microsoft
Corporation.

For any other information, please send a
letter to the authors at One Microsoft Way,
Redman, WA.

