
Journal of STEM Education Vol. 6 • Issue 3 & 4 July-December 2005 29

Introduction

There exist efforts in making software testing
an integral part of programming courses (Barbosa
et al. 2003; Edwards 2001; Edwards 2003a). Such
initiatives do not only increase awareness among
students about the role and significance of testing,
but also help them attain significant program analy-
sis experience. Yet, there are very few suggestions
for the improvement of critical analysis skills as part
of software design courses (Garlan 1994). The
emergent trend toward model-driven development
(Gluch and Weinstock 1998) and model-driven ar-
chitecture (MDA 2004) implicates the necessity of
integrating model-based verification methodologies
into software design education. Analyzing design
artifacts requires educated use of formal method-
ologies. Unfortunately, current state of the practice
relies on informal procedures and previous experi-
ence in building similar systems. Lack of proper
training and poor management skills are major
causes of delayed, bug-riddled, and incomplete
software. Teaching proper design analysis skills
early in the pedagogical development is crucial, as
such analysis is the only tractable way of resolving
problems early when they are easy to fix. Given
these observations, we explore the following: How
can we integrate formal methods seamlessly into
introductory software design courses, so that stu-
dents can (1) appreciate pragmatic utility and use
of formal methods without getting into the quag-
mire of theoretical details, (2) avoid steep learning
curves about the syntax of a specific formal method
by using alternative abstract templates to critically
analyze designs, and (3) discover inconsistencies
and design conflicts within the realm of the actual
software development process.

Related Work in Bringing Formal
Analysis Methods into the Classroom

Current approaches in integrating formal meth-
ods into software engineering education fall into
three main categories. The first approach is to avoid
formal methods. While this strategy is observed in
most continuing education programs, its appropri-
ateness for general software engineering educa-

Integrating Model-Based Verification
into Software Design Education

Levent Yilmaz and Shuo Wang
Auburn University

Abstract

Proper design analysis is
indispensable to assure quality
and reduce emergent costs due
to faulty software. Teaching
proper design verification skills
early during pedagogical
development is crucial, as such
analysis is the only tractable way
of resolving software problems
early when they are easy to fix.
The premise of the presented
strategy is based on the
observation that fundamental
component of any engineering
curriculum is the use of formal
and sound techniques that
facilitate analysis of artifacts
produced by students. Yet,
fundamental roadblocks exist in
bringing the state of the art in
design analysis to the classroom
due to the steep learning curve
and quagmire of theoretical
details involved in formal
methods. This paper suggests a
strategy and tool support that
promotes the attainment of
design evaluation skills. We also
discuss how selective and
pragmatic application of formal
methods can be used in software
design education.

tion is debatable. The second approach is to de-
vote a specific course with emphasis on formal veri-
fication of source code. The advantage of such a
course is that students are exposed to a wide vari-
ety of formal methods such as Z and VDM. The
broad coverage of formal methods provides flex-
ibility to tailor a course to make it relevant to cer-
tain software engineering skills. However, broad
coverage of formal methods may not enable a stu-
dent to be proficient on a specific formal approach.
Furthermore, the methods are taught in an isolated
manner with an emphasis on the notations rather
than the underlying principles. This isolated expo-
sure to formal methods prohibits students to apply
such approaches to software engineering practices.
The third approach is to redesign the entire pro-
gram so that formal methods are integrated through-
out the curriculum. A widely known example is the
CMU strategy (Garlan et al. 1992; Garlan 1994),
where the graduate program in software engineer-
ing is redesigned to facilitate exposure to formal
models of software systems. While the CMU strat-
egy presents a novel strategy for comprehensive
treatment of formal methods, the curriculum is for-
mulated for graduate students. As such, the strat-
egy presumes familiarity and exposition to ad-
vanced logic and discrete math. In the second strat-
egy outlined above, formal methods courses are
taught at the undergraduate level following prelimi-
nary exposition to discrete math or mathematical
logic courses, yet they are treated in an isolated
manner on toy source code samples for illustrative
purposes. Use of formal methods within the con-
text of software design and modeling is not yet com-
mon. The fundamental reason why formal meth-
ods are not utilized effectively in undergraduate
software design courses can be attributed at the
least to the following two reasons: (1) the imped-
ance mismatch between the underlying mathemati-
cal underpinning of formal methods and student’s
semi-formal, if not informal, view of the design prob-
lem and (2) lack of tool support for seamless inte-
gration of formal methods into software design edu-
cation.

Journal of STEM Education Vol. 6 • Issue 3 & 4 July-December 2005 30

A Strategy for Integrating Model-Based
Verification into Software Design
Education

In this section a strategy for the integration of
model-based verification (Gluch and Weinstock
1998) into undergraduate software design educa-
tion is discussed. The Web-based computer aided
evaluation center, the components of which are
shown in Figure 1, plays a critical role in the pro-
posed strategy.

The system is used within the context of
COMP3700, which is a Software Design and Mod-
eling course (COMP3700) at the department of
Computer Science and Software Engineering. It is
a junior-level course with an average enrollment of
35 students. As a prerequisite, students are ex-
pected to be familiar with software construction.
This includes experience in topics such as testing,
debugging, configuration management, low-level
file and device I/O, and systems and event-driven
programming. Based on this foundation,
COMP3700 presents an integrated set of tech-
niques for software analysis and design based on
object-oriented concepts using the UML
notation. Introduction to object concepts, funda-
mentals of an object oriented analysis and design
process, use-case analysis, object modeling using
behavioral techniques, and design patterns consti-
tute the fundamental topics covered in COMP3700.
The structure of the course is recently redesigned
to cover software design quality assessment. While

Figure 1: Web-Based Computer-Aided Verification Environment – Web-CAVE

the traditional lecture style is preserved, it is de-
cided that analysis and design skills are best ac-
quired in terms of (1) learning by doing (Edwards
2001), (2) critical analysis (Stice 1987), and (3)
collaborative problem solving. As such, COMP3700
offers two substantial group projects. The first
project entails the development of design models
based on the given problem definition. Students
develop UML (Booch et al. 1999) models to visual-
ize design artifacts. The second project involves
the peer evaluation of a design produced by an-
other group using various quality assessment pro-
cedures. To support wide applicability in various
course settings, models are translated into an
interoperable format called XMI before submission
into the central repository. The second phase in-
volves collecting design metrics and performing
structural consistency checks.

Figure 2 illustrates the outcome of a structural
analysis session. For violated consistency condi-
tions, the rule definition and its category (type) are
indicated along with a detailed description. The
rules include intra-consistency checks within a
single diagram (finite state chart), as well as inter-
consistency constraints among distinct model types
(i.e., sequence diagrams vs. state charts). Such
checks are reported to be useful in group projects
as different students are responsible for assuring
design coherency and consistency before final
project submission. The rules depicted in Figure 2
represent some of the completeness and consis-
tency rule violations. Along with intra-consistency

Journal of STEM Education Vol. 6 • Issue 3 & 4 July-December 2005 31

rules, state transitions in finite state machine de-
signs of objects are traced back to messages in
sequence diagrams for completeness. Unac-
counted state transitions in finite state machines of
design objects are common mistakes among incon-
sistencies between design diagrams. Besides
structural consistency analysis, Web-CAVE pro-
vides facilities for students to collect various de-
sign metrics to relate them to identified high level
quality objectives such as maintainability, testabil-
ity, and reusability.

Structural consistency analyzer component of
Web-CAVE is also used by students as a peer-re-
view tool. COMP3700 project guidelines require
routine inspections and reviews of design artifacts
as part of the new emphasis on design quality as-
surance. Students understand that design is a pro-
cess of experimentation involving the continuous
discovery of technical information associated with
the function, form, and fit of the product. Inspec-
tions and peer-reviews are an integral practice in

the process of experimentation in COMP3700. Be-
fore the development of Web-CAVE, students were
required to identify a set of critical questions to over-
view their designs (hard copies of design charts)
and check for violation of design integrity and con-
sistency. Web-CAVE provides a significant number
of online services including design consistency rules
(see Figure 2) and metrics collectors to facilitate
performing efficient and effective reviews.

Behavioral Model Analyzer

Structural analysis significantly reduces errors,
but it does not guarantee behavioral correctness.
In COMP3700 students are required to develop
UML state charts to depict behavioral aspects of
design objects. While model checking (Clarke et
al. 1986, 1994, 2000) is a state of the art analysis
method, its use requires understanding of tempo-
ral logic in developing formal specifications. Note,
however, students taking COMP3700 lack such for-

Figure 2: Report Generated by the Structural Consistency Analyzer

Journal of STEM Education Vol. 6 • Issue 3 & 4 July-December 2005 32

mal methods background. As a result bringing this
advanced technology, in its basic form, to improve
critical design analysis skills is a challenging task.

To this end, a behavioral model analyzer (BMA)
tool is developed to help students formulate abstract
high-level queries for their behavioral designs. The
constraints, against which the model is checked,
are defined in terms of a menu of templates. The
formulated pattern is then automatically mapped
onto a temporal logic specification of the SPIN
model checker. By using a high-level constraint
composer menu, the students are then able to query
their designs to reason about the properties sug-
gested (Dwyer et al. 1999).

Potential errors detectable by the analyzer in-
clude (1) unreachable states, which are states that
will never be reached in the state machine of the
model, (2) missing end states, (the state machine
in the model never terminates), (3) infinite loops,
(4) constraint violation. As shown in Figure 3, un-
reachable states are redrawn as red circles; an
extra end state in red label “End” will appear when
there is no proper ending state found, and a loop of

solid red circles with red transition arrows among
them suggests an infinite loop. If after model check-
ing is complete, no change in the visualization oc-
curs, this indicates that the analyzer did not find
any potential problem. In model checking, a com-
plete model not only contains the specification of
system behavior, defined in XMI files and eventu-
ally translated into Promela input files, but also the
formalization of correctness requirements that ap-
ply to the model.

For example, let P be a behavioral property ex-
pressed in numerical logic, X = 0. Let it also be
given that X is some integer variable in the model
specification that represents certain behavior, and
0 is the only correct value X is supposed to have. It
is possible to evaluate, under certain circum-
stances, whether this correctness property remains
true or not, e.g., will X always be 0; will X eventu-
ally be 0, etc. Correctness properties are supplied
to the model checker in the form of linear temporal
logic (LTL). Since students are typically unfamiliar
with LTL, they create an equivalent “constraint pat-
tern” using the BMA user interface. Students still

Figure 3 – A Potential Infinite Loop

Journal of STEM Education Vol. 6 • Issue 3 & 4 July-December 2005 33

need to supply the definition of P, Q, or R, known
as a “token” in a constraint pattern, but the inter-
face provides a useable means to do so. Table 1
below lists the implemented correctness properties
within the BMA.

Evaluation and Improvement
of Web-CAVE

While a comprehensive survey or field study is
not yet performed to evaluate the effectiveness of
the system, group project team leaders are asked
to reflect upon their group design project experi-
ence. A common response among team leaders
was on the convenience of Web-CAVE in locating
inter-diagram inconsistencies. That is, as different
members of a group develop distinct aspects and
views of the same system (i.e., conceptual model,
interaction diagrams, class design diagrams, and
finite state designs), inconsistencies among dia-
grams become a significant concern. Structural con-
sistency analyzer in Web-CAVE help members of
a group recognize integrity problems earlier and co-
ordinate their activities to assure design correct-
ness. A common criticism is the difficulty of use of
the system as well as the lack of clarity of the rel-
evance of collected design metrics to selected qual-
ity objectives. Web-CAVE is now being extended
to provide a framework by which design indicators
(i.e., coupling) can be mapped to design principles
(i.e., modularity) that govern the process, by which
the design is produced. Adherence to such prin-
ciples is expected to help achieve quality objec-
tives such as reusability. Such a framework will pro-
vide the necessary heuristics to infer the degree to
which a quality objective is achieved in a group
project.

Summary and Conclusions

The steep learning curve and effort involved in
applying conventional formal methods in software
engineering are the primary roadblocks in their prac-
tical use. Realizing this barrier, integration of model-
based verification perspective to software design
and modeling course is discussed. The premise of
the strategy is based on the observation that fun-
damental component of any engineering curricu-
lum is a collection of formal and sound techniques
that facilitate analysis of artifacts produced by stu-
dents. We discuss several opportunities to facili-
tate the integration of model-based verification into
undergraduate software design education. To this
end, high-level architecture of a web-based com-
puter aided verification system is presented to il-
lustrate how attainment of analysis and verification
skills can be promoted through an online design
evaluation system. Also, the notion of abstract veri-
fication patterns is used to bridge the gap between

Table 1: Abstract Analysis Patterns

the mathematical underpinnings of formal methods
and student’s semi-formal design worldview.

References

Barbosa, E. F, LeBlanc R., Guzdial M., Maldonado
C. J. (2003). “The Challenge of Teaching Software
Testing Earlier into Design,” Workshop on the
Teaching of Software Testing (WTST). February 7-
9, 2003 Melbourne, Florida.

Booch G., J. Rumbaugh, and I. Jacobson (1999).
The Unified Modeling Language User Guide.
Addison-Wesley.

Clarke E. M., Emerson E., Sistla A. 1986. “Auto-
matic Verification of Finite State Concurrent Sys-
tems using Temporal Logic Specifications,” ACM
Transactions on Programming Languages and Sys-
tems, vol. 8 no. 2, pp. 244-263.

Clarke E. M., Grumberg O. and Long E. D. 1994.
“Model Checking and Abstraction,” ACM Trans-
actions on Programming Languages and Systems,
vol.16 no.5, pp. 1512-1542.

Clarke E. M., Grumberg O. Peled D. 2000. Model
Checking. MIT Press.

Dwyer B. M., Avrunin S. G., and Corbett C. J.
(1999). “Patterns in Property Specifications for Fi-
nite-state Verification,” in Proceedings of the 21st
International Conference on Software Engineering,
May, 1999.

Edwards H. S. (2001). “Can Quality Graduate Soft-
ware Engineering Courses be Delivered Asynchro-
nously On-Line,” In Proceedings of the ICSE’2000,
pp. 676-679.

Edwards H. S. (2003a). “Automatically Assessing
Assignments That Use Test-Driven Development,”
Workshop on the Teaching of Software Testing
(WTST). February 7-9, 2003 Melbourne, Florida.

Edwards H. S. (2003b). “Web-CAT Automated
Grader,” http://web-cat.cs.vt.edu/grader/.

Journal of STEM Education Vol. 6 • Issue 3 & 4 July-December 2005 34

Garlan D, Shaw M., Okasaki C., Scott C., and
Swonger R. (1992). “Experience with a course on
architectures for software systems,” In Proceedings
of the Sixth SEI Conference on Software Engineer-
ing Education. Springer Verlag, LNCS 376, Octo-
ber 1992. Also available as CMU/SEI technical re-
port, CMU/SEI-92-TR-17.

Garlan D. (1994). “Integrating Formal Methods into
a Professional Master of Software Engineering Pro-
gram,” In Proceedings of The 8th Z Users Meeting,
June 1994.

Gluch P. D. and Weinstock B. C. (1998). “Model-
Based Verification: A Technology for Dependable
System Upgrade,” CMU/SEI-98-TR-009, Septem-
ber 1998.

MDA. (2004). MDA: “The Architecture of Choice for
a Changing World,” http://www.omg.org/mda/
executive_overview.htm.

Stice E. J. (1987). Developing Critical Thinking and
Problem-Solving Abilities. Jossey-Bass Inc., San
Francisco, CA, 1987.

Levent Yilmaz is assistant professor of Computer
Science and Software Engineering in the College
of Engineering at Auburn University. Before joining
to faculty in 2003 he was a senior research engineer
in the Simulation and Software Division of Trident
Systems Incorporated, in Fairfax, Virginia. Dr.
Yilmaz earned his Ph.D. and M.S. degrees from
Virginia Tech. �He worked as a lead project engineer
and principle investigator for advanced simulation
methodology, model-based verification, and
simulation reuse technology development efforts.
His research interests are on advancing the theory and methodology of
simulation modeling, agent-directed simulation to explore and understand
dynamics of software processes and project dynamics, and education in
simulation modeling. He is a member of ACM, IEEE Computer Society, Society
for Computer Simulation International, and Upsilon Pi Epsilon.

Shuo Wang is graduate student of Computer
Science and Software Engineering in College of
Engineering at Auburn University. He earned his
B.S. degree in Computer Science from Georgia
Institute of Technology. His academic and research
interests are software modeling and simulation,
software engineering, computer networks, and
human-computer interaction. He is a member of
ACM and IEEE.

