
Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 24

Abstract
Our department has redesigned
its electrical engineering and
computer engineering programs
completely by adopting a learning
methodology based on compe-
tence development, problem solv-
ing, and the realization of design
projects. In this article, we show
how this pedagogical approach
has been successfully used for
learning compiler design.

KEYWORDS
Competence development, Prob-
lem-based Learning, Knowledge
acquisition, Assessment, Compi-
lation, Lexical analysis, Syntactic
analysis.

Applying a Competency- and Problem-Based
Approach for Learning Compiler Design
Ahmed Khoumsi and Ruben Gonzalez-Rubio
University of Sherbrooke

1.	INTRODUCTION
	 Several studies have shown serious
gaps between the objectives of university
engineering programs and the needs of an
evolutionary economy [1]. As a solution, our
department has undertaken a fundamental and
major reform of its Bachelor of Electrical and
Computer Engineering degrees [2]. The new
learning approach is based on competence
development for solving problems and realizing
design projects.
	 After an introduction to the new learning
method, we illustrate its application in the
computer engineering program, by a problem-
based learning (PBL) unit which aims at learning
compiler design. This PBL unit is denoted
APPcomp

�. This paper is aimed essentially at
people interested in new learning approaches
in computer engineering. Note that the PBL
approach described here has also been applied
to learn many other subjects. For example, [3]
presents a PBL unit for learning probabilities.
	 This paper is structured as follows. In
Section 2, we introduce the pedagogical
approach adopted in our department. Sections
3 and 4 present APPcomp as an illustration of
the PBL approach. In Section 3, we present
the competencies, the necessary knowledge
for developing such competencies, and the
documentation used as resources in APPcomp.
Section 4 presents the contextual problem to be
solved and the various pedagogical activities
realized in APPcomp. In Section 5, we explain how
students are assessed in APPcomp. Section 6
discusses the advantages of the PBL approach
in learning compiler design. And in Section 7,
we conclude the paper.

2.	Pedagogical approach and 	
	or ganization
	 In this section, we present the main
principles behind the major reform to our
electrical and computer engineering programs.
A more detailed presentation can be found
in [2], from which this section is inspired.

Such reform aims at making the objectives of
university engineering programs compatible
with the needs of economy and society [1].

2.1 Competency and knowledge
	 “Conventional” engineering programs give
priority to knowledge acquisition. With the
reform, priority is given to the development of
competencies. Simply speaking, a competency
can be seen as an ability to act and use resources,
for solving a given task. Note that competency
is not synonymous with know-how, because
the competency is flexible and adaptable, and
cannot be reduced to an algorithm. Competency
concerns more heuristics than algorithms. In our
reformed engineering programs, competencies
are classified in four types: scientific and
technical competencies, design competencies,
inter-personal competencies, and intra-personal
competencies.
	 Development (or implementation) of a
competency requires acquisition of knowledge,
which can be considered as resources.
Knowledge has been classified into three
types: declarative (know factual information),
procedural (know how to use factual information),
and conditional (know when and where to
use factual information). In the context of our
engineering program, factual information can
consist of, for example, a definition, a theorem,
a hypothesis, a rule, or an algorithm.

2.2 Organization of a semester, PBL approach
	 The programs are organized around four-
month periods which, for simplicity, will be
called semester2. The programs last eight
academic semesters, alternating with four
industrial training semesters beginning after
the third academic semester. Each semester
is based on a theme (e.g., computer systems,
embedded systems, etc.) and includes two
types of activities: six consecutive two-week
problem-based learning (PBL) units, and a
design project which is spread over the whole
semester (see Fig. 1). With a total of 15 credits
per semester, the project is worth 3 credits in each
of the first six semesters, and 6 credits in each of

� APP is the French acronym for Apprentissage
 par Problèmes et par Projets.
2 Henceforth, the term semester means academic semester.

Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 25

the last two semesters.
	 Each of the six two-week PBL units of a
semester is based on a problem to be solved,
rather than on a discipline or subject as in
a conventional program. This approach is
motivated by the fact that PBL is the natural
mode of knowledge acquisition. A problem must
come from a real engineering situation, but also
be presented in such a way that the students
have to identify their existing (i.e., previously
acquired) knowledge and the new (i.e., not
still acquired) knowledge, that are necessary
for solving the problem. The formulation of the
problem must also lead the students to identify
the necessary skills for solving the problem
effectively. This learning contextualization
provides realistic situations where knowledge
is applied, and thus, encourages a better
understanding of that knowledge.
	 PBL encourages active learning, and thus,
students are more responsible and autonomous
in the learning process. Professors are
“resources” that react by providing opinions or
indications, validating or invalidating solutions,
asking questions, etc. But professors should
never provide a solution (or information allowing
to deduce straightforwardly a solution).
	 Let us consider Semester 3 of the computer
engineering program, the theme of which is
Computer System Architectures. One of its six
PBL units, denoted APPcomp, targets learning of
the design of compiler. As an illustration of the
PBL approach, APPcomp is presented in detail in
Sections 3 and 4.

3.	Competence and knowledge 	
	in APPcomp
	 In this section, we present the competencies
targeted in APPcomp, the necessary knowledge
for developing such competencies, and the
documentation used as resource.

3.1 Competencies targeted in APPcomp

	 We do not consider the design of a whole
compiler. We are simply interested in the design
of two important components of a compiler,
namely, a lexical analyzer and a syntactic
analyzer. This is sufficient for learning many of
the basic principles of compiler design. These
two components are also commonly called
scanner and parser, respectively. The following
four competencies have been identified:

C1: 	To describe formally lexical units
 (LU) 	 by using regular expressions(RE) 	
		 and finite state automata (FSA)
		 More precisely, from a set of LU defined 	

		 intuitively (e.g., textually), the targeted 	
		 abil i ty is to descr ibe these LU using
 		 RE and FSA.

C2: 	To describe formally a syntax by us-	
		 ing 	a grammar; to analyze and ma-
 		 nipulate a grammar
		 More precisely, the goal is to be able to:
 			 1) describe with a grammar a syntax 	
					 that is init ial ly defined intuitively
					 (e.g., textually);
 			 2) identify the category of a given 	
					 grammar (e.g., LL(1), LR(1)); and
 			 3) modify a grammar in order to satisfy 	
					 desired constraints.

C3: 	To design and realize a lexical ana-
 		 lyzer
		 More precisely, from a given set of RE 	
		 or FSA describing accepted lexical units, 	
		 the ta rge ted ab i l i t y i s to cons t r uc t
		 a software that reads a text and:
 		 1) c h e c k s whether the lexical units 	
			 contained in the text are accepted;
 		 2) 	returns the recognized lexical units.

C4: 	To des ign and rea l ize a syntact i -
		 cal analyzer
		 More precisely, from a grammar describ-	
		 ing 	a syntax, the targeted ability is to con-	
		 s t ruct a sof tware that reads a text
		 (e.g., expression, program) and:
 		 1) 	checks whether the text is accepted by 	
			 the grammar;
 		 2) 	constructs an abstract syntax tree (AST) 	
			 that models the syntactic structure of
			 the text.

PBL
unit 1

PBL
unit 2

PBL
unit 6

Fi
na

l A
ss

es
sm

en
t

..........

Design project

2 weeks

2 weeks

13 weeks

Figure 1. Semester structure.

Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 26

3.2 Necessary knowledge in APPcomp

	 Development of competencies of Section
3.1 requires acquisition of knowledge, which
has been classified into three types: declarative,
procedural, and conditional (see Section 2.1).

3.2.1 Declarative knowledge
	 Declarative knowledge consists of factual
information to be known. We have identified the
following elements of declarative knowledge:

Mathematics:

•	 Regular expressions (RE)

•	 Context-free (or algebraic) grammars

•	 Abstract syntax trees (AST)

•	 Associativity and priorities of operators

	 Remark 1: Finite state automata (FSA) is 	
	 declarative knowledge already acquired.

	 Remark 2: Trees in general are declarative 	
	 knowledge already acquired. Here, we are 	
	 interested in a particular type of tree called 	
	 abstract syntax tree.

Engineering sciences:

•	 Lexical analysis: method based on FSA 	
	 programming

•	 Syntactical analysis: Top-down methods, 	
	 recursive-descent parsing (RDP)

•	 Postfix expressions

3.2.2 Procedural knowledge
	 Procedural knowledge is to know how to
use factual information. We have established
the following elements of procedural knowledge
from the above list of declarative knowledge
elements:

•	 Describe lexical units of a simple language 	
	 using RE and FSA

•	 Describe the syntax of a simple language 	
	 using a context-free grammar

•	 Modify a grammar in order to respect given 	
	 constraints

•	 Read necessary information in a text file

•	 Print in a text file the information produced 	
	 at each step of a program

•	 Derive a lexical analyzer from a FSA

•	 Der ive a syntact ical analyzer f rom a 	
	 context-free grammar using recursive-	
	 descent parsing (RDP)

•	 Construct an AST

•	 Eva lua te an AST ob ta ined f rom an 	
	 arithmetical expression

•	 Read an AST obtained from an arithmetical 	
	 expression

•	 Derive a postfix expression from an AST

•	 Create validation tests of a syntactical 	
	 analyzer

3.2.3 Conditional knowledge
	 Conditional knowledge is to know when
and where to use factual information. We
have identified the following list of conditional
knowledge elements:

•	 Select a grammar that respects given 	
	 constraints

•	 Select data structures appropriate for an 	
	 AST

•	 Select data structures for a lexical analyzer

•	 Select data structures for a syntactic 	
	 analyzer

•	 Select validation tests for a lexical analyzer

•	 Select validation tests for a syntactic 	
	 analyzer

	 Note that other (declarative, procedural,
conditional) knowledge is necessary, but is
assumed already acquired.

3.3 Documentation
	 The documentation so far used in APPcomp
has been prepared by the first author of
this article and consists of several chapters
entitled:

•	 Introduction to languages and to com-	
	 pilation

•	 Lexical analysis, regular expressions, finite 	
	 state automata

•	 Grammars and languages

•	 Abstract syntax trees

•	 Introduction to syntactic analysis

•	 Top-down parsing

•	 Arithmetical expressions: representations 	
	 (e.g., infix, postfix, AST), operators asso-	
	 ciativity and priority

Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 27

4.	Pedagogical activities in 	
	 APPcomp
	 In Section 3, we presented: the objective
of APPcomp, which is to develop certain
competencies; the necessary knowledge that
must be acquired for achieving this objective;
and the documentation used as resource. In the
present section, we present the pedagogical
activities that have been elaborated to reach
this objective.
	 Organization of activities of APPcomp results
from a slight adaptation of a generic organization
elaborated by our department [2] and in [4]. The
adaptation will be explained in the last paragraph
of Section 4.2. A typical organization of APPcomp
is illustrated in Table 1, where grey zones
are related to project activities. Let us detail
APPcomp activities in the following subsections.
Note that in addition to several activities under
supervision, students occupy the rest of their
time with personal study.

4.1 Monday-1: Tutorial-1, problem to 	
	 solve
	 For each group (comprising about 10
students), APPcomp starts by a 90-minute
tutorial meeting (denoted Tutorial-1). Through
a collaborative work and under tutor guidance,
students:

1.	 read the terms of the problem to solve, 	
		 keep only the relevant terms, and form-	
		 ulate succinctly the problem;
		 (30 minutes)

2.	 p r o p o s e s o l u t i o n a l t e r n a t i v e s
 	 (i .e. , tasks for solv ing the problem)
		 a n d , f o r each solution alternative,
 	 identify pertinent knowledge (acquired
 	 previously or to be acquired); (45 minutes)

3.	 organize and prioritize solution alternatives;
(10 minutes)

4.	 review the list of knowledge to be acquired. 	
		 (5 minutes)

	 The tutor’s role in Tutorial-1 consists essen-
tially in asking relevant questions, validating
students’ prior knowledge, ensuring that learn-
ing needs and solution alternatives are well
identified. But the tutor never presents solutions
to the problem. For the sake of clarity, let us
introduce the problem that has been used this
year (2004) in APPcomp.

Week 1

Problem

validation
(3h)

solving
Problem

(3h)
procedures
solving

solving (3h)
for problem
Collaboration(1h30)

Tutorial−1

Week 2

Tutorial−2
(1h30)solving

procedures
(3h)

Problem

work
Laboratory

(3h)
Personal studyPersonal

study

Project (4h)

Friday−2Thursday−2Wednesday−2Tuesday−2Monday−2

Personal

Monday−1 Tuesday−1 Wednesday−1

study
Personal

study

Thursday−1 Friday−1

study

Project (3h)

Personal
study

Personal
study

Personal

study
Personal

study
Personal

study
Personal

(formative
Sommative
assessment
(2h)Consultation

(1h)

 assessment)

Table 1. Activities of APPcomp.

Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 28

4.1.1 Problem to solve

	 In the company where you work, a high-level programming language is used for the development of programs to be downloaded in on-
board systems. A compiler has been developed in the past for the target environment used so far. For technical and economical reasons,
the management of the company has decided to replace the target environment. The existent compiler must thus be abandoned and a new
compiler must be designed.
	 In order to avoid having to design a whole compiler after each change of the target environment, your boss commissions you to design
and realize the so-called frontal part of a compiler. Your boss advises you to heed Samy’s advice, an experienced colleague in compilation
but who has no time to realize himself the task which you are asked to do. After a first meeting with Samy and following his advice, you
decide to produce a first prototype that carries out the syntactical analysis of arithmetical expressions. This is the objective considered in
this PBL unit.
 Arithmetical expressions consist of operands, operators, and opening and closing parentheses. Operands are of type integer. Operators
are addition (+), subtraction (-), multiplication (*) and division (/). Operator priorities are as follows: + and - have the same priority; * and /
have the same priority; * and / have priorities over + and -. The four operators are right-associative. Note that priorities can be forced by
using parentheses.
 An operand can have one of the following two forms:

 - Non empty sequence consisting of numbers 0 to 9.

 	 - Upper-case letter followed by a (possibly empty) sequence consisting of characters such that:
		 - each character is an upper- or lower-case letter or an underscore “_”,
		 - an underscore cannot be followed by another underscore, and cannot be the last character of an operand.

 Examples: AbcDe ZxjM_q_Sn
 Counter-examples: aBcDe ZxjM__qSn ZxjM_q_

Here is an example of arithmetical expression: (A_a + B_b) * C_n / 74. Operations are executed in the following order: addition, division,
and multiplication.
	 After a second meeting with Samy and in agreement with him, you have decided to start the design of a particular module called lexical
analyzer which will be used by the syntactic analyzer. The approach, selected by Samy and your boss, consists of specifying the lexical units
using regular expressions (RE) and finite state automata (FSA). A lexical analyzer can then be derived in a systematic way from the FSAs
generated. It has been decided not to use Lex or any other similar software tool.
	 Once the lexical analyzer is terminated, you need to design the syntactical analyzer. After some research, you learn that there exist two
categories of syntactical analysis methods: bottom-up methods and top-down methods. All these methods require the use of a grammar for
modeling the syntax of expressions to be analyzed. In order to obtain a simple compiler whose design does not require the use of special-
ized software tools, the method which has been suggested to you, and which you select, is called recursive-descent parsing (RDP).
	 Samy informs you that RDP is applicable only if the grammar that specifies the syntax of arithmetical expressions is of a certain type and
respects certain constraints. He advises you to study top-down methods, in particular LL(1) method, so that you’ll be able to construct a
suitable grammar.
	 Besides determining if an arithmetical expression is syntactically correct, a significant task of a syntactical analyzer consists of producing
an abstract syntax tree (AST) that models the syntactic structure of the arithmetical expression. After construction of the AST and in order to
check correctness of this construction, you must: 1) evaluate the AST, that is, calculate the result of the corresponding arithmetical expres-
sion (assuming all its operands are values); and 2) read the AST, that is, translate the data structure of the AST into a readable form (on the
screen or in a text file).
	 In order to benefit from the advantages of object-oriented programming, you intend to use one of the two object-oriented languages that
you know: C++ or Java. Since the real-time aspect is not primordial and in order to promote portability, the management has selected Java.
Besides, Samy has prepared skeletons of java classes for you (provided on the Web page of APPcomp).

Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 29

4.1.2 Results of Tutorial-1
At the end of Tutorial-1:

•	 The problem formulated succinctly by
students must look like:	

	 The objective is to design and realize
		 a syntact ical analyzer o f ar i thmetical

expressions by using the method called
recursive-descent parsing.	

	 	 This syntactical analyzer:	
		 - 	calls a lexical analyzer that must be 	

	 	 designed and realized by using finite state
			 automata,	
	 	 - 	not only determines if an arithmeti- 	

	 	cal expression is syntactically cor-	
	 	 rect, but also produces an abstract 	
		 syntax tree that models the syntactic 	
		 structure of the arithmetical expression.	
	 	 	 	 	 	

	 No speciaized software tool must be used.	
	 	 	 	 	 	

•	 The knowledge identified as necessary
for solving the problem must be close to
the 	list of Section 3.2.		

•	 Students must agree on an organized
list of tasks (so-called solutions
alternatives). This list must look like:	

	 1. Produce a lexical analyzer using an 	
	 approach consisting in:			
	 - 	describing lexical units using finite

 state automata (FSA); 		
	 	 	 	 	 	

	 	 - 	der iv ing a lexical analyzer in a sys-
 tematic way from a FSA.	

	 2.	Produce data structures that allow to:
		 -	 construct a AST,	
 		 -	 read and evaluate a AST.	

	 3.	P r o d u c e a s y n t a c t i c a l a n a l y z - 	
	 e r by using recursive-descent parsing.

		 This analyzer must, for every given arith-	
 metical expression E:

		 - check if the syntax of E is correct,
 		 -	 construct an AST tha t models the 	

		 syntactic structure of E.		

	 4. Use Java as a programming language

	 5. Validate the produced software:
 - prepare a testing plan,
 - carry out tests.
		 I n t h e t e s t o f e a c h s y n tactic 	

	 analysis execution, you must e v a l u a t e 	
	 and read the AST constructed.		
	 Note that testing is not mentioned in the 	
	 problem to be solved, but students already 	
	 know that every software produced must 	
	 be tested.				

4.2 Wednesday-1: Problem-solving 	
	 procedures and laboratory work
	 On Wednesday-1, students have two
supervised activities which are introduced in
the following two subsections, respectively.

4.2.1 Problem-solving procedures
	 In the morning and under tutor supervision,
students apply knowledge acquired in personal
study, by practicing problem-solving procedures
in a 3-hour session. This activity consists in
solving several exercises and targets practicing of:

	 •	 descr ibing lexical uni ts by regular 	
		 express ions (RE) and f in i te s tate
		 automata (FSA),

	 •	 constructing a FSA that recognizes 	
		 lexical units,

	 •	 deriving a lexical analyzer from a FSA,

	 •	 constructing an abstract syntax tree 	
		 (AST) corresponding to a given ar i th-	
		 metical expression,

	 •	 using a grammar by applying corre-	
		 sponding production rules,

	 •	 deriving a syntactical analyzer from a 	
		 grammar.

	 Exercises for this activity have been carefully
elaborated for practicing relevant knowledge
to solve Items 1-3 of the solution alternatives
(Section 4.1.2). In this activity, exercises are
solved by students and presented by them to
their peers. The tutor validates the solutions
presented, but (s)he must not present solutions
him/herself.
	 During this session, students have the
opportunity to design on paper a simple lexical
analyzer and a simple syntactical analyzer.

4.2.2 Laboratory work
	 In the afternoon and under tutor or assistant
supervision, students have a 3-hour laboratory
session. They create java classes that implement
the lexical and syntactical analyzers designed
in the morning session of “problem-solving
procedures”. For each of the five java classes to
be realized, a skeleton is provided to students in
order to avoid their spending time on details not
related to the targeted competencies. The java
classes created will be completed and adapted
later for the resolution of the problem. This
activity aims at practicing knowledge related to
Items 4-5 of the solution alternatives, in addition
to continuing the practice of knowledge related

Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 30

to Items 1-3.
	 Note that in comparison to the generic
organization of our department [2], we have
added the constraint that the Laboratory
session must occur after the Problem-solving
procedures session. We think that this constraint
improves learning because the students create
in the afternoon what they have designed in the
morning.

4.3 Thursday-1: Collaboration for solving 	
	 the problem
	 Through a 3-hour session and under tutor
guidance, students use knowledge acquired
so far (in supervised activities and in personal
study), and collaborate to elaborate solutions
to the problem. After having practiced activities
(through problem-solving procedures and
laboratory work) of Wednesday-1, students
should be able to start the resolution of the five
items identified in Tutorial-1 (Section 4.1.2). The
tutor’s intervention consists of asking questions,
making comments, drawing students’ attention
to relevant points, validating students’ solutions,
etc, but not presenting solutions to the
problem.

4.4 Monday-2: Problem-solving 		
	 procedures
	 Under tutor guidance, students practice
problem-solving procedures in a second 3-
hour session (in addition to the session of
Wednesday-1 morning). This activity targets
practice of:

	 •	 identifying lexical units from an informal 	
		 description of a syntax,
	

	 •	 constructing a grammar that models a 	
		 syntax defined informally,

	 •	 deriving postfix expressions.

The activity also targets continuing practice of
some items of Wednesday-1:

	 •	 describing lexical units by RE and FSA,

	 •	 designing a syntactical analyzer,

	 •	 deriving AST.

After having practiced activities of Wednesday-
1 and Monday-2, the students should be able to
solve the entire problem.

4.5 Tuesday-2: Problem-solving 		
	 validation
	 In a 3-hour session, students vaidate their
solutions in the presence of a supervisor (tutor

or assistant). More precisely, students:

	 •	 explain to the supervisor the method
		 u s e d t o s o l v e e a c h i t e m o f t h e
		 solution alternatives (Section 4.1.2);

	 •	 present the resul ts obtained. More 	
		 precisely, students apply their lexical
		 and syntactical analyzers to test cases 	
		 provided by the supervisor.
	 	 	

Some test cases are selected in order to
check detection of different types of errors; for
example:

Lexical errors: identifier with two consecutive
underscores, identifier terminating by an
underscore, identifier starting by a lower-case
letter, unknown character.

Syntactical errors: consecutive operators,
missing operator, missing parenthesis, missing
operand.

	 Other test cases consist of correct
arithmetical expressions with one, two or three
operators, and are targeted at checking lexical
unit recognition and AST construction.
	 The supervisor validates solutions, makes
comments, draws students’ attention on missing
or incorrect points, but does not provide any
correct method or result.

4.6 Wednesday-2: Tutorial-2
	 Each group of students has a second 90-
minute tutorial meeting (denoted Tutorial-2).
Under tutor guidance, students reflect on what
they have learned, and determine if anything is
missing in their understanding of the problem.
By asking questions, the tutor helps students in
the following steps:

Validation of knowledge acquired:
(60 minutes) Students:

	 •	 review conclusions that were generated in 	
		 Tutorial-1 (see Section 4.1.2), that is: a
		 succinct formulation of the problem, and
		 solution alternatives;

	 •	state the concepts that have been used in 	
		 their study. The tutor makes sure that
		 all essential concepts are reviewed, and 	
		 checks if necessary knowledge (see
		 Sect. 3.2) is acquired correctly.

	 •	generalize and de-contextualize the new 	
		 knowledge. For example:

			 o U s e o f F S A : m o d e l l i n g ,
				 design, analysis of discrete event 	
				 systems (software, automation,etc).

Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 31

		 o Use of trees: binary search trees 	
			 (optimizing access time for reading,
			 searching, writing data).

		 o	U s e o f r e c u r s i ve p r o c e d u r e s : 	
			 computing series defined recursively,
			 such as Sn

 = Sn-1
 + Sn-2

.

Assessment of learning:
(30 minutes) Students:

	 •	 report on knowledge acquired and on 	
		 proposed solutions. They determine 	
		 among necessary knowledge elements 	
		 ident i f ied in Tutor ia l -1 (see l is t o f
		 Section 3.2), those that are operational 	
		 and those that require additional learning.

	 •	 discuss on their learning strategies.

	 •	 give their opinion about the learning and 	
		 the atmosphere during the PBL unit.

	 Students also submit a written report (about
8 pages) presenting what has been learned in
solving the problem.
	 The remaining activities are related to
assessment and are presented in the next
section.

5.	Assessment in APPcomp

	 Principles used in assessment are taken from
[5, 2]. Since APPcomp targets the development of
the four competencies introduced in Section
3.1, assessment must be elaborated carefully
in such a way as to allow accurate evaluation
of these competencies. A formative written
assessment, consisting of several problems, is
provided to students (at the end of Wednesday-
2) with a detailed model answer for each
problem. Besides, competency(ies) involved
in each question of a problem are identified,
indicated and weighted. By weighted, we mean
that a number is associated to the competency
for measure purpose. Students can thus:
check their individual learning achievement by
comparing their answers to the model answer,
measure to which level each competency is
developed, and evaluate their preparation to the
written exams (see below). In order to determine
if a student passes or fails APPcomp, (s)he will be
evaluated through:

	 •	 the report submitted during Tutorial-2 	
		 (see Section 4.6), which presents clearly 	
		 what has been learned in solving the 	
		 problem. This is a final and written report 	
		 of the activities of Tuesday-2.

	 •	 two wr i t ten exams, re fe r red to as
 		 summative a s s e s s m e n t s , a t the

 		 end of APPcomp (i.e., Friday 2) and at
 		 the end of the semester, respectively.

Similarly to formative assessment, compe-
tency(ies) involved in each question in a
summative assessment, are identified, indi-
cated and weighted. So far, assessment in
APPcomp has been distributed among the four
competencies as follows: C1: 15 % C2: 20 %
C3: 25 % C4: 40 %
	 To determine if a student passes APPcomp, let
us consider the three possible situations:

	 1.	 A student passes APPcomp i f (s)he 	
		 i s evaluated at least 50 % fo r each
 		 of the four targeted competencies.

	 2.	 A student fails a competency if (s)he is 	
		 evaluated below 50 % in this competency
		 but gets at least 50 % globally (i.e., 	
		 average over the four competencies 	
		 is at least 50 %). The student must be
		 assessed again on the failed competen-	
		 cies through a written exam. The student 	
		 and the tutor agree on a date for the
		 exam within a period of one semester
		 after the end of the unit. The student 	
		 p a s s e s A P P c o m p i f (s) h e o b t a i n s 	
		 at least 50 % i n e v e r y competency 	
		 evaluated in the exam. Otherwise, the
		 student fails 	APPcomp and (s)he is in
		 Situation 3.

	 It is worth noting that if the student passes
the exam (and thus APPcomp), (s)he is evaluated
exactly 50 % in the competencies of the exam
(i.e., competencies initially failed) even if (s)he
obtains more than 50 %.

	 3.	 A student fai ls APPcomp i f (s)he is
		 evaluated below 50 % globally. The stu-	
		 dent must register to the unit the next
		 year, like a student that takes APPcomp 	
		 for the first time. This induces a transla-	
		 tion in the student’s schooling because, 	
		 by taking APPcomp a second time, the 	
		 student will have to postpone another 	
		 unit. This translation may be propagated 	
		 during several semesters, possibly until 	
		 (s)he terminates his/her bachelor’s de-	
		 gree.

No documentation is allowed during summative
assessments.
	 Note that this PBL unit is worth 2 credits,
with a total of 15 credits for the semester, and
a total of 120 credits for the whole computer
engineering program.

Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 32

6.	Discussion
	 Let us compare the PBL approach to
“conventional” courses, in the context of APPcomp.
With the PBL approach, students are sooner
and better prepared for designing lexical and
syntactical analyzers and for developing java
programs with recursion. Let us clarify what we
mean by sooner and better.

6.1 Students are prepared sooner
	 APPcomp takes place during Semester 3, and
its main learning objectives can be categorized
as follows:

	 •	 Design of a lexical analyzer,

	 •	 Design of a syntactical analyzer,

	 •	 Programming in Java with recursion.

	 In our previous (course-based) computer
engineering programs, students had to wait
until:

Semester 4 for studying Item 1 and partially
Item 3, in a course entitled Data structures and
algorithms (DSA). We say “partially” about Item
3, because students were not forced to use
recursion.

Semester 7 for studying Item 2, in a course
entitled Language organization and compilation
(LOC).

6.2 Students are better prepared
	 With the new programs, learning contextu-
alization is promoted by permitting the students
to solve real problems at the early stage of their
learning. In APPcomp, the problem to solve is
simple and a little amount of code is developed,
but students need to think about and mas-
ter concepts before coding. For example, in a
laboratory session of APPcomp, students practice
knowledge related to the resolution of a con-
crete problem (i.e., to the design of a compiler).
This approach is used starting with the first se-
mester of our new programs. During semesters
1 to 6 of the traditional programs, laboratory
assignments were mainly oriented on a subject
(e.g., automata) instead of on problem resolu-
tion. Students had to wait until Semester 7 to
have some (and not all) laboratory assignments
aimed at problem resolution.
	 Another ability developed with the new
programs is integration. In APPcomp, students
integrate several concepts that were studied
separately in the course DSA. They also
integrate several concepts of the courses DSA
and LOC.

	 Another advantage of the new programs is
that during a two-week period, students use on
average 80 % of their time in studying concepts
related to the current unit (e.g., APPcomp), and
thus, to the resolution of a single problem.
The remaining 20 % of the time are used for
the project that lasts the whole semester. In
standard practice (i.e., previous programs),
students study in parallel five different courses
the whole semester, which implies frequent
awkward “switchings” between subjects very
distant with each other. For example, in previous
programs, students may have had as many as
five independent laboratory assignments during
the same week.
	 Let us also note that in the course LOC of our
previous programs, students used specialized
software tools (LEX and YACC) for generating
their lexical and syntactical analyzers. They
spent much time in learning how to use these
tools, to the detriment of learning concepts
directly related to the three items mentioned
above (in Sect. 6.1).
	 Regularly, at the end of each PBL unit,
the person responsible for the semester has
a meeting with students in order to receive
their comments and feedback about the
unit. At the end of the semester, supervisors
involved in PBL units or in the project, have a
meeting with students in order to receive their
global comments. Student feedback has been
positive for the semester; and in particular for
APPcomp, it has been very encouraging in many
aspects, such as their learning and interest,
and their appreciation of tutors and assistants.
Interestingly, we have heard from supervisors
involved in industrial training semesters that
students coming from the new programs are
greatly appreciated.

Journal of STEM Education Volume 7 • Issue 1 & 2 January–June 2006 33

7.	Conclusion
	 The Department of Electrical and Computer
Engineering of the Université de Sherbrooke
has undertaken a major reform of its programs.
The new pedagogical approach is based on
competence development for solving problems
and realizing design projects. As an illustration
of the problem-based learning (PBL) approach,
we present a two-week PBL unit that targets
developing and assessing competencies
related to compiler design. Student feedback
has been very positive and encouraging about
their learning, interest and their appreciation of
supervisors.
	 Note that APPcomp is not a purely practical
unit, but it is also based on several theoretical
subjects (automata, grammar, …). Thus, with
this study, we have also demonstrated that PBL
can be applied to non-purely practical subjects.

Acknowledgements
	 Many thanks to Prof. Frédéric Mailhot who
has proofread the article and improved the
English significantly.

REFERENCES
	 [1] 	 Canadian Academy of Engineering. 	
		 Evolution of Engineering Education 	
		 in Canada, 1999. http://www.acad-
		 eng-gen.ca/publis/publi_an.html.

	 [2] 	 G. Lachiver, D. Dalle, N.Boutin, 	
		 A. Clavet, F. Michaud, and J.-M. Dirand. 	
		 Competency- and Project-Based 	
		 Programs in Electrical & Computer 	
		 Engineering at the Université de 	
		 Sherbrooke. IEEE Canadian Review, 	
		 pages 21-24, summer 2002.

 	 [3] 	 A. Khoumsi and B. Hadjou. Learning 	
		 Probabilities in Computer Engineer-	
		 ing by Using a Competency-and 	
		 Problem-Based Approach the Jour	
		 nal of STEM Education: Innova-	
		 tions and Research , Vol. 6,
		 Issues 3&4, July-December 2005.

	 [4] 	 D. Woods. Problem-Based Learning: 	
		 resources to gain the most from
 		 PBL, 1996.http://chemeng mcmaster.
		 ca/pbl/append-a.htm.

	 [5] 	 M.E. Huba and J.E. Freed. Learner-
		 Centered Assessment on College
 		 Campuses. Shifting the Focus 	
		 f r om Teach ing t o Lea r n ing . 	
		 Boston: Allyn and Bacon, 2000.

Ahmed Khoumsi received the Engineer degree in
Aeronautics and Automation from the engineer school
SUP’AERO (Toulouse, France), in 1984. From 1984 to 1988,
he achieved his research activities in the LAAS, a CNRS
research center, in Toulouse. In 1988, he received the Ph.D.
degree in Robotics and Automation from the University Paul
Sabatier in Toulouse. From 1989 to 1992, he was an Assistant
Professor in Robotics and Computer Engineering at the
engineer school ENSEM (Casablanca, Morocco). From 1993
to 1996, he was a Postdoctoral Fellow in the Communication
Protocols group of the University of Montreal. From 1996 to June 2000 he was an
Assistant Professor, and since then he is an Associate Professor in the Department
of Electrical and Computer Engineering, at the University of Sherbrooke, in Canada.
His present research activities include: modeling, testing, and control of distributed
and real-time systems; design and creation of telecommunications services; and
application of new learning methods in teaching.

Ruben Gonzalez-Rubio received the Engineer degree in Electronic and
Communications from the engineer IPN ESIME (Mexico City, Mexico), in 1972. From

1972 to 1978, he worked in industry. In 1981, he received the Ph.D.
degree in Computer Engineering from the ENST (École Nationale
Supérieure de Télécommmunications), Paris, France. From 1981 to
1988, he was with the BULL research center, in Paris. In 1987, he
received the Doctorat ès Sciences degree in Computer Engineering
and Mathematics from the Pierre et Marie Curie University, Paris,
France. From 1989 to now, he is a Professor in the Department
of Electrical and Computer Engineering, at the University of

Sherbrooke, in Canada. His present research activities include: all aspects of software
engineering, optimisation, build software applications.

