
Journal of STEM Education  Volume 7 • Issue 3 & 4   July–December 2006 80

Experimental Modal Analysis of Rectangular 
and Circular Beams

University of Maryland, Baltimore County

B. H. Emory and W. D. Zhu 

Abstract    
Analytical and experimental meth-
ods are used to determine the 
natural frequencies and mode 
shapes of Aluminum 6061-T651 
beams with rectangular and cir-
cular cross-sections.  A unique 
test stand is developed to pro-
vide the rectangular beam with 
different boundary conditions 
including clamped-free, clamped-
clamped, clamped-pinned, and 
pinned-pinned.  The first 10 bend-
ing natural frequencies and mode 
shapes for each set of boundary 
conditions are measured.  The 
effect of the bolt torque on the 
measured natural frequencies is 
examined.  A new technique is 
used to mount an accelerometer 
on the circular beam to measure 
its torsional modes; its first 20 
natural frequencies and first 10 
mode shapes are measured.  The 
measured natural frequencies 
and mode shapes of both beams 
are compared with their theoreti-
cal predictions.  The Timoshenko 
beam theory is shown to provide 
better predictions of the higher 
bending natural frequencies of the 
circular beam than the Bernoulli-
Euler beam theory.  The material 
properties of the circular beam, in-
cluding the elastic modulus, shear 
modulus, and Poisson’s ratio, are 
determined accurately.   The use 
of the rectangular and circular 
beam test stands as a teaching 
tool for undergraduate and gradu-
ate students is discussed.  The 
laboratory demonstration using 
the test stands was well received 
by students in the undergraduate 
vibrations class.
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1. introduction 

	 The main focus of this work is to develop 
two test stands and accompanying activity to 
teach undergraduate and graduate students 
about vibrations and experimental modal 
analysis. Currently our department does not 
have an instructional module that can be 
used to educate students on how to perform 
modal testing and use modern vibrations and 
modal testing equipment and software.  Within 
modal testing there are many mistakes that 
can be made, which are not noticed when 
doing computer simulation using finite element 
software.  A few simple mistakes include choice 
of the wrong accelerometer location, improper 
accelerometer mounting, choice of the wrong 
exciter tip, impacting the structure with too 
much force that would overload the instruments, 
double impacts, and improper setup of the data 
collection equipment and software.  Laboratory-
based engineering education is important 
because “engineering students see themselves 
as essentially practical” [1].  Laboratory experience 
is critical to a student’s development because unlike 
computer simulation, laboratory work teaches 
students that attention to detail is paramount.  It 
is also important to remember that engineers will 
always be responsible for their actions and that an 
education, which separates them in any way from 
reality, introduces danger [2].
  	 The test stand developed for a rectangular 
beam provides different sets of boundary 
conditions.  It can be used for undergraduate and 
graduate education as well as other experiments 
in the laboratory.  For example, it can be used to 
validate a robust, iterative algorithm for structural 
damage detection [3] and the optimal damper 
location that can dissipate the largest number 
of modes of a beam [4].  The test stand could 
also be used to complement computational 
simulations like the one presented by Pota and 
Alberts [5]. The boundary conditions are studied 
by comparing the natural frequencies and mode 
shapes from experimental measurements 
with those predicted using the Euler-Bernoulli 
beam theory.  In many vibrating beam or plate 
experiments there is no discussion of validity 

of boundary conditions [6-9].  The effect of the 
sensor location is demonstrated along with 
that of the torque in the bolts used to secure 
the rectangular beam at the clamped and 
pinned boundaries.  In many cases there is 
no discussion of accounting for mass loading 
by the sensor and determining its placement 
before testing [6-8]. Proper selection of the 
exciter tip is also addressed by examining the 
measured frequency response function (FRF) 
and coherence.  
 	 Knowledge of material properties, such 
as the elastic modulus, shear modulus, and 
Poisson’s ratio, are important in mechanical 
design and research.  Determination of the 
material properties of a specimen is important 
since they vary from one to another. Vibration 
testing is preferred over destructive testing 
because the specimen can be used in further 
experimentation. Vibration testing is also 
advantageous for material property testing 
because it is less costly than using a tensile 
or torsion test.  A circular beam test stand is 
presented for material property testing because 
the torsional equation of motion is exact for the 
circular beam.  A new apparatus is used for 
measuring the torsional vibration of the circular 
beam with an accelerometer [10].  Free-free 
boundary conditions are used because they 
are more easily verifiable than other boundary 
conditions.  The linear curve-fit method [11] 
is used to determine the material properties.  
The Timoshenko and Euler-Bernoulli beam 
theories for the bending modes are compared 
to determine which theory gives more accurate 
results.  Students can gain a wide range of 
experience in modal testing by performing 
similar experiments with the test stands.  

 

2. Experimental SETUP
  	 To perform modal testing a personal 
computer is used to control and collect data 
from a dynamic signal analyzer (Siglab Model 
20-42).  Inputs from the accelerometer (PCB 
U352C66) and impact hammer (PCB Model 
086C01) are conditioned using a signal 
conditioner (PCB Model 482A17).  In order 
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to measure all the frequencies in a given 
bandwidth, the sampling frequency ws needs 
to be at least twice the maximum frequency 
to be measured.  Otherwise aliasing will occur.  
In Siglab the sampling frequency is 2.56 times 
the bandwidth.  In all experiments in this work 
the bandwidth starts at the zero frequency and 
aliasing will not occur.  To obtain the desired 
frequency resolution dF, the record length RL 
in the time domain is chosen to be RL =   ——  . 
The bandwidth is adjusted to give the desired 
accuracy.  
  	 Care should be taken in selecting the 
record length.  When the record length is too 
short, the vibration of the structure does not 
dissipate fully, which causes leakage.  Applying 
a windowing function to the response signal 
helps to force the signal to zero near the end 
of the measurement, which reduces leakage.  
Another advantage of this windowing function 
is that it places more weight on the initial part 
of the signal than the latter.  While the use of 
the exponential window in Siglab can affect 
the measurement of damping ratios of the 
structure, it does not affect the measurement 
of its natural frequencies and mode shapes.  A 
boxcar window is used for the input.
	 While testing over different frequency ranges 
the hammer tip is changed accordingly.  At low 
frequencies an extender is used for the hammer.  
For all experiments, only one accelerometer with 
2 gram mass is used to keep mass loading to a 
minimum.  For every impact test three impacts 
are averaged to ensure repeatable results and 
to obtain a coherence measurement.  The 
accelerometer is affixed to the specimen using 
Petro wax.

 

3. Rectangular Beam
 	 The rectangular beam has a cross-section of 
.0761 m by .0065 m and a total length of .916 m.  
Its mass density is 2715 kg/m3.  The boundary 
conditions are composed of steel clamps with 
an aluminum base and can be configured 
to impose clamped (Fig. 1) or pinned (Fig. 2) 
conditions.  The beam has a length of .861 m, 
.812 m, 860 m, and .912 m when subjected to 
the clamped-free, clamped-clamped, clamped-
pinned, and pinned-pinned boundary conditions, 
respectively.  There are five main parts to each 
boundary, including the aluminum base plate 
(Fig. 3), steel-threaded base (Fig. 4), steel 
pin base (Fig. 5), 95.25 mm bolts, and 190.5 
mm bolts.  The aluminum base plate allows for 
the steel-threaded base to be mounted to it 
in a variety of positions.  The base is made to 

accommodate various fixtures, some of which 
are not utilized in this work.  The steel-threaded 
base has two sets of threads to receive the 
190.5 mm bolts.  Steel is used because torque 
is applied to the bolts; boundary conditions 
made of aluminum can be ruined after torquing 
a few times.  The clamped or pinned boundaries 
are secured with two 190.5 mm bolts, the steel-
threaded base is fastened to the aluminum base 
with 95.25 mm bolts, and the aluminum base 
is secured to an optical table using five 95.25 
mm bolts.  Once the boundary condition type is 
chosen, a torque wrench is used to ensure that 
both bolts have nearly the same torque and that 
the boundary does not impose a moment on the 
beam; a level can also be used on top of the 
boundary for this purpose.  A level is important 
when setting up a pinned boundary as very little 
torque is needed. 
	 The first experiment conducted on the beam 
is to determine the amount of torque at which 
the first natural frequency of the clamped-free 
rectangular beam becomes constant.  The 
impact and accelerometer locations remain 
fixed in this experiment, and the extender is 
used for the hammer as the bandwidth is from 
0 to 10 Hz.  For the first test the nuts are only 
screwed down so that the bottom of the nut 
touches the top steel bar (hand-tight). The 
torque is increased in increments of 6.8 Nm and 
an impact test is performed accordingly.
	 When using a clamped boundary condition, 
the bolts are torqued to 40.7 Nm.  For a pinned 
boundary condition the bolts are only hand-
tightened so that the top bar does not rotate but 
the beam can still rotate.  Tightening the bolts 
more than hand-tight can make the pin cut into 
the beam and change the boundary from pinned 
to clamped.  The pinned boundary condition is 
also modeled physically by allowing as little of 
the beam as possible to extend past the pinned 
end because the weight of the extended portion 
of the beam creates a moment at the pinned 
end.   
	 The next experiment is to locate the 
accelerometer so that it has a minimal effect 
on the first natural frequency while achieving 
the desired coherence for the clamped-free 
beam.  The extender is used as the bandwidth 
is from 0 to 10 Hz.  The optimum location of 
the accelerometer is found by impacting the 
beam in the same location while moving the 
accelerometer from the free end to the clamped 
end of the beam.  Once a range is found in 
which the accelerometer has little effect on 
the first natural frequency, the coherence can 
be improved by moving the hammer closer 

Fig. 1   Clamped boundary 
             condition

Fig. 2   Pinned boundary 
            condition

Fig. 3   Bottom view of the 
            aluminum base

Fig. 4   Top view of the threaded 
            steel base

Fig. 5   Overview of the pinned 
             base

Pin

Bolt Hole
Slot to Receive 
Pinned Side

Hole for Mounting Steel Threaded Base

Hole for Mounting Aluminum  Base to Optical Table



Journal of STEM Education  Volume 7 • Issue 3 & 4   July–December 2006 82

or farther away from the accelerometer.  The 
location of the impact is important as exciting the 
beam close to the boundary will excite the high 
modes while exciting the beam near the free 
end will excite the low modes.  The amplitude 
of the response is also important in determining 
the best placement of the accelerometer as 
increasing the amount of output due to the 
input reduces the effect that noise has on the 
measurement.  For all tests coherence over .98 
at resonance is considered to be necessary 
for accurate measurements since the structure 
being tested is very simple.  Coherence is 
also taken into account when determining the 
optimal sensor placement because coherence 
decreases as the accelerometer is moved 
closer to the boundary.  This occurs because 
the amplitude of vibration decreases and noise 
contributes to more of the signal.   
	 A set of experiments is also conducted to 
determine which hammer tip is the best for 
the frequency range tested.  For the same 
impact and accelerometer locations a variety 
of hammer tips are tested.  The tip selection 
is important.  If the tip is too hard it will excite 
higher modes than desired.  Since not all of the 
energy input into the system is used in exciting 
the modes to be measured, the coherence will 
be low for lower modes.  The opposite is true for 
a soft tip not exciting higher modes. 
	 The bending natural frequencies of the beam 
are measured by placing the accelerometer at 
the middle of the beam widthwise to eliminate 
any torsional modes from the FRF.  Each impact 
test is conducted at the middle of the beam 
widthwise to ensure that no torsional modes 
are excited as well.  Care is taken to avoid 
nodal points while testing to keep the amplitude 
of the response measured much greater than 
the noise level.  To obtain a mode shape of the 
beam, a roving hammer test is conducted at 
equally spaced positions along the length of 
the beam, keeping the same sensor location for 
each test.  For each beam more impact locations 
than the highest desired mode number are used 
to ensure that the full shape can be captured.  
ME’Scope VES is then used to do curve fitting 
on the FRFs to generate the complex mode 
shape vector for each experimental mode.  
The mode shape vector is complex due to the 
existence of light natural damping.   
	 To determine the correlation of the 
experimental and theoretical (see Appendix A) 
mode shapes, the modal assurance criterion 
(MAC) is used to determine the deviation 
between them, which is defined as [11]
					     (1)

where (yE)j and (yT)j are the j-th component of 
the experimental and theoretical mode shape 
vectors, respectively, of dimension m, and the 
superscript * denotes complex conjugation.  
Note that the undamped, theoretical natural 
frequencies and mode shapes are compared 
with the damped, experimental natural 
frequencies and mode shapes, respectively.  
Note also that the MAC numbers given in Tables 
3 through 6 and in Table 8 have been multiplied 
by 100. 
	 To determine the elastic modulus, the 
theoretical natural frequencies of the bending 
modes from the Euler-Bernoulli beam 
theory (Appendix A) are plotted against the 
corresponding experimental ones.  The resulting 
line from a linear curve fit should have a slope of 
one [11].  If the line has a slope greater than one, 
the assumed elastic modulus in obtaining the 
theoretical results is too large and needs to be 
lowered until the theoretical verse experimental 
line has a slope of one, and vice versa. 
 

4.  Results and Discussion for  	
     the RECTANGULAR BEAM   
	 The effect of the sensor location on the first 
natural frequency of the clamped-free beam is 
shown in Table 1, where the boundary at  x=0 
is clamped. It is seen that the natural frequency 
increases as the accelerometer is moved closer 
to the clamped boundary, which shows that the 
effect of mass loading from the accelerometer 
decreases.  The FRF in the neighborhood of 
the first natural frequency of the clamped-
free beam at various torque levels is shown in 
Figure 6.  When the torque applied to the bolts is 
increased, the natural frequency increases until 
the torque reaches 27 Nm.  Ensuring the bolt 

Table 1   First natural frequency of the clamped-free beam for various sensor  	
               positions

Fig. 6   FRF of the clamp-free 
            beam with different 
            bolt torques
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torque above this threshold value is important in 
approximating a clamped boundary.  Note that 
the peak amplitude in Figure 6 also increases 
slightly with the bolt torque due to reduced 
damping.  
	 The measured bending natural frequencies 
of the rectangular beam subjected to each set 
of boundary conditions are given in Table 2 
along with the natural frequencies computed 
using the Euler-Bernoulli beam theory.  The 
boundary conditions are considered to be good 
approximations of their theoretical models 
since all theoretical versus experimental natural 
frequency plots yield an elastic modulus near 
67 GPa; the slopes of the resulting lines in Fig. 
7 from the linear curve-fit are all nearly one.
	 The MAC matrix for each set of boundary 
conditions is given in Tables 3 through 6.  Each 
column of the MAC matrix represents one 
experimental mode compared with all theoretical 
modes and each row represents the opposite.   
From the MAC matrices it is seen that there is 
good correlation between the theoretical and 
experimental results since all MAC numbers 
are above 90% for the same theoretical and 
experimental modes and less than 10% for 
different ones.  The normalized experimental 
mode shapes from ME’Scope VES for the first 
ten bending modes of the clamped-free beam 
are plotted with the corresponding theoretical 

mode shapes in Figure 8.
	 Plots of the FRF and coherence associated 
with a soft, medium, and hard tip used to 
excite the clamped-free beam are shown in 
Fig. 9.  In Fig. 9a the tip used is too soft, the 
higher modes are not fully excited, and the FRF 
is very jagged.  The coherence for the higher 
modes in Fig. 9b is less than .98 and jagged 
due to poor excitation of the higher modes.  
The FRF from the correct exciter tip is smooth 
throughout the measurement bandwidth, and 
the coherence drops below .98 only when there 
is an anti-resonance.  Figure 9c is the result of 
using an exciter tip that is too hard, because 
the coherence near each of the first four natural 
frequencies is less than .98.

5. Circular Beam
	 The circular beam has a diameter of .0191 m, 
a length of 0.796 m, and the same mass density 
as that of the rectangular beam. Free-free 
boundary conditions are approximated using 
thin threads (Fig. 10).  To validate the free-free 
boundary conditions, the natural frequencies 
corresponding to the rigid-body modes are 
ensured to be within 10% of the first bending 
mode.  The threads are attached to the ends 
of the beam as shown in Fig. 10.  The locations 
of the threads are chosen for convenience here 
since the best locations for the threads would 
be at the nodal points.  The bending vibration 
of the circular beam is measured by affixing 
the accelerometer to the circumference of 
the beam.  The accelerometer is placed near 
but not at the center of the beam to avoid a 
nodal point of the even modes.  To measure 
the longitudinal vibration, the accelerometer is 
affixed to an end of the beam perpendicular to 
the face.  Measurement of the torsional vibration 
presents a challenge as the accelerometer 

Fig. 7   Theoretical versus experimental natural frequencies of the 
            rectangular beam

Table 2   Theoretical and experimetal 	
               natural frequencies of the first 10  	
               bending modes of the rectangular 
               beam (C=Clamped, F=Free, and  	
               P=Pinned)
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Fig. 8   The first ten theoretical (dashed line, -x-) and experimental (solid line, -o-) bending mode shapes 	
            of the clamped-free rectangular beam
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needs to be affixed tangentially to the beam.  To 
this end, a bracket is made by bending a thin 
steel band around the beam, leaving a tab for 
the accelerometer (Fig. 11) [10].  The bracket 
is attached to the beam using Petro wax.  This 
system works because the natural frequencies 
of the bracket are much higher than those of 
the beam.  A roving hammer test is used to 
measure the mode shapes.   
	 To determine the elastic modulus, the 
theoretical bending natural frequencies from the 
Timoshenko beam theory (see Appendix B) are 
plotted against their measured ones.  The elastic 
modulus can also be determined by comparing 
experimental and theoretical (see Appendix C) 
longitudinal natural frequencies [10], which is an 
easier method.  The same approach is used for 
the experimental and theoretical (see Appendix 
C) torsional natural frequencies to determine 
the shear modulus.  The Poisson’s Ratio, v, is 
then determined from

where E is the elastic modulus and G is the 
shear modulus.

Fig. 9   FRF (solid line, ___) and coherence (dashed line,  ---) using (A) the soft 	
            tip, (B) the correct tip, and  (C) the hard tip.

Table 3   Clamped-free beam MAC 	     	
               matrix

Table 4   Clamped-clamped beam MAC 	
                matrix

Table 5   Clamped-pinned beam MAC 	
                matrix

Table 6   Pinned-pinned beam MAC 	    	
                matrix
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Fig. 10   Free boundary conditions of the circular beam

Fig. 11  Accelerometer bracket used for 	
             torsional vibration measurement

Fig. 12  Theoretical versus experimental natural frequencies of the free-free circular beam

 

6. Results and Discussion 
    for the circular Beam   

	 The natural frequencies corresponding to 
the rigid-body modes are measured to be 6.25 
Hz and 12.5 Hz, respectively.  The boundary 
conditions are considered to be a valid 
approximation of their theoretical model because 
the highest rigid-body mode frequency is 9% of 
the first bending mode, which is smaller than 10-
20% limit defined in [11].  Figure 12 compares 
the experimental natural frequencies with the 
theoretical ones.  The elastic and shear moduli 
of the beam are determined to be 70.5 GPa 
and 26.45 GPa, respectively, with a Poisson’s 
ratio of .333.  The measured Poisson’s ratio for 
Aluminum 6061-T651 is in excellent agreement 
with its published value of 0.33 [12].  Using 
the ASTM testing procedure [13] in a previous 
study [14] yields relatively large measurement 
errors for the Poisson’s ratio.  The resulting line 
from the linear curve fit of the theoretical and 
experimental bending natural frequencies has 
a slope of .995 and that from the linear curve 
fit of the theoretical and experimental torsional 
natural frequencies has a slope of .998 (Fig 12).  
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Using the elastic modulus determined from 
the bending vibration, the linear curve fit of the 
theoretical and experimental longitudinal natural 
frequencies results in a line of slope 1.002 (Fig. 
12).  All these slopes are nearly one.
  	 The first 20 measured natural frequencies 
of the free-free circular beam are given in Table 
7, along with the natural frequencies from the 
Timoshenko and Euler-Bernoulli beam theories 
for the bending modes and vibration theories 
for the longitudinal and torsional modes.  The 
Timoshenko beam theory gives a much better 
estimation of the higher bending natural 
frequencies than the Euler-Bernoulli beam 
theory.  It is noted that, however, for the first 
two bending modes the Euler-Bernoulli beam 
theory gives a slightly better estimation.  
	 The MAC matrices for the first 10 modes 
of the free-free circular beam, in the order of 
increasing frequencies, are calculated using 
the Euler-Bernoulli and Timoshenko beam 
theories, respectively, as shown in Tables 8 and 
9, where the first seven modes are the bending 
modes, the eighth mode is the first longitudinal 
mode, and the ninth and tenth modes are the 
first two torsional modes.  The MAC numbers 
for all the bending modes and the longitudinal 
mode are above 90%.  The two beam theories 
yield essentially the same results for the MAC 
numbers, and the difference between the two 
is at most .01%.  The normalized experimental 
mode shapes of the first ten modes of the 
free-free circular beam are plotted with the 
corresponding theoretical mode shapes in 
Figure 12.
 	 Using a roving accelerometer test to find 
the mode shape of the longitudinal mode 
would result in a MAC number of .77 due to 
the mass loading effect.  The movement of the 
accelerometer changed the natural frequency 
of the longitudinal modes by up to .8%.  This 
change is not considered acceptable since 
a change of .8% corresponds to a frequency 
change of about 25 Hz for the first longitudinal 
natural frequency, which is about 20 times larger 
than the frequency resolution used.  The roving 
hammer test yields much better results.  The 
bracket (Fig. 11) used for the torsional modes 
gives good results for the natural frequencies 
but less accurate results for the mode shapes.  
The main reason for this is that repeatability is 
difficult to achieve, since it is hard to impact the 
beam at the same angle at each location in order 
to excite the torsional modes.  An interesting 
observation from Tables 8 and 9 is that the 
first longitudinal mode and the first torsional 
mode are highly correlated, and so are the first 

Table 7   	Experimental and theoretical 	
	 natural frequencies of the first 	
	 20 modes of the free-free 
	 circular beam   

Table 8   	Free-free circular beam MAC 	
	 matrix using the Euler-Bernoulli 	
	 beam theory

Table 9   	Free-free circular beam MAC 	
	 matrix using the Timoshenko 	
	 beam theory

Exp.
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Fig. 13  The first ten theoretical (dashed line, -x-)  and experimental (solid line, -o-) mode shapes of the 
             free-free circular beam
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bending mode and the second torsional mode.  
The reason for this is that in either case the two 
mode shapes are mathematically similar. 

7. Educational Value
	 Much of the work presented in this paper can 
be used in the classroom or laboratory setting to 
aid both undergraduate and graduate students 
in learning the fundamentals of vibrations 
and experimental modal analysis.  Students 
in most fields of engineering can benefit from 
learning that boundary conditions cannot be 
easily approximated in a physical system. The 
rectangular beam test stand can be used to 
demonstrate the effect of the bolt torque on 
the vibration of the beam.  Students can also 
learn how to simulate the free-free boundary 
conditions from the circular beam test stand.  
	 Different aspects of impact testing can be 
demonstrated with the two test stands.  The 
choice of the hammer tip and extender can be 
demonstrated, as well as the selection of the 
excitation location.  The concept of nodal points 
can be shown by placing the accelerometer on 
a node or impacting the beams at a node.  The 
concept of mass loading can be demonstrated 
by examining how the natural frequencies 
change with the accelerometer location. 
	 Methods for comparing the experimental 
and theoretical natural frequencies can be 
demonstrated along with the nondestructive 
ways to determine the material properties 
from these comparisons.  Students can be 
shown why incorporation of rotary inertia and 
shear deformation is important for the higher 
modes of the circular beam.  They also learn 
how to obtain the mode shapes from a series of 
experimental FRFs.  The MAC number can be 
introduced to compare the mode shapes.  
	 Students can see that due to existence of 
natural damping all the measured modes are 
complex, and can see the limits to which lightly 
damped and undamped natural frequencies and 
mode shapes can be compared.  They can also 
learn about digital measurement and sampling 
techniques. 

8. COURSE ACTIVITY AND 
     STUDENT RESPONSE
	 The rectangular and circular beam test 
stands were demonstrated to students in the 
junior level Vibrations course (ENME360) at 
the University of Maryland, Baltimore County 
(UMBC) in the spring semester of 2004 and 
2005.  There were 44 students enrolled in the 

spring semester of 2004 and groups of 10 to 
12 students were invited to attend the one-hour 
demonstration in the instructor’s laboratory, the 
Dynamic Systems and Vibrations Laboratory 
(DSVL) at UMBC.  The bending vibration of 
the circular beam was not discussed because 
the Timoshenko beam theory is not covered 
in the undergraduate vibrations course.  The 
demonstration was also presented in a modified 
form to high school students in the Worthwhile 
to Help High School Youth (WORTHY) program 
administrated by Northrop Grumman in the 
summer of 2003 and those in the Future 
Engineers in Dynamic Systems (FEDS) 
Academy administrated by the DSVL in the 
summer of 2004 and 2005.  
	 There are four main goals of the demonstration 
and accompanying student activity for ENME360. 
First is to have students become familiar with 
the equipment since most have never used this 
type before and need to understand the physics 
of the equipment.  Second is to have students 
compare the differences between theoretical 
and experimental results and to understand the 
reasons for the differences or errors.   Third is to 
have students find the material properties of the 
beams from the measured natural frequencies.  
Fourth is to have students understand how 
to design an experiment to measure the 
longitudinal and torsional vibration of the 
rectangular beam.  
	 Students were guided through the basics of 
measuring the natural frequencies and mode 
shapes of the clamped-free rectangular beam.  
First, they were taught about the physics of an 
ICP shear accelerometer and different ways of 
mounting the accelerometer using Petro wax, 
dental cement, or stud mount. They were shown 
the calibration sheet for the accelerometer and 
explained the importance of taking precise 
measurement especially for mode shapes. 
Next, they learned how to use the ICP impact 
hammer with different tips and extender mass.  
They then learned the importance of a signal 
conditioner that converts the charge from the 
accelerometer and hammer to a voltage. 
	 Students were introduced to the Siglab 
20-42 spectrum analyzer, the types of 
measurements it can take, and the signals 
it can be used to generate.  The relations 
among the measurement time, bandwidth, 
sampling frequency, and frequency resolution 
were explained.  They were taught about the 
relevant windows for use with the impact test, 
such as force-exponential, box-exponential, 
and boxcar or no window.  They learned that 
while the use of the exponential windowing can 
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avoid leakage, it can introduce extra damping 
into the measurement, which needs to be 
accounted for in post-processing for estimation 
of damping ratios.  They were instructed to reject 
measurements that contained an overload 
since an overload is recorded as the maximum 
or minimum allowable voltage.  Double hits were 
also rejected because a double hit can introduce 
dropouts in the input force spectrum that can 
lead to poor estimation of the FRF due to the 
noise inherent in the system [14, 15].  They need 
to be avoided especially when a force window is 
used because it can possibly exclude the second 
impact from the measurement.  Students were 
taught how to setup the triggering for taking 
measurements with the Siglab, which if not 
done properly, makes it impossible or too easy 
to trigger a measurement.  Students were also 
shown that some pre-triggering is important 
for satisfying the periodicity requirement of 
the Fast Fourier Transform (FFT) as it lets the 
measurement start at zero. 
	 After the Siglab was set up, students were 
shown how a simple test is performed using 
three averages. The time history, FFT, FRF, 
and coherence were shown, and students 
were given a brief review of the FFT, FRF, and 
a short introduction to the coherence function.  
A second test was performed where one of the 
impacts was misplaced so that they could see 
the change in the time history, FFT, FRF, and 
coherence.  A test was performed subsequently 
with the accelerometer at a different location, 
so students could see the effect of the 
accelerometer location on the dynamics of the 
system.  The effect of the torque level on the 
clamp was also demonstrated, so students 
could see that the boundary conditions should 
not always be considered perfect even though 
the bolts seem to be tight.  
	 Students were shown how to approximate 
the free-free boundary conditions with the 
circular beam.  They were also shown how to 
measure and excite the second plane bending 
modes of the rectangular beam and the 
longitudinal and torsional modes of the circular 
beam.  They performed a series of simple tests 
on their own to become more familiar with the 
equipment. They measured the mode shapes of 
the clamped-free beam using either the roving 
hammer technique or the roving accelerometer 
technique, followed by analysis and discussion 
on the advantages and disadvantages of each 
type of testing.  Processing the FRF data in 
ME’Scope VES, students were shown that the 
structure has light natural damping with the 
measured phases close to 0 or 180 degrees.  

They were also shown how to animate the 
mode shapes of the beam, followed by a 
brief introduction to the MAC number and its 
importance in distinguishing one mode from 
another.
	 With the experimental data provided 
to students in the homework assignment, 
they determined the elastic modulus of the 
rectangular beam with clamped-clamped, 
clamped-pinned, and pined-pinned boundaries 
from the first 10 bending modes, and the elastic 
and shear moduli of the circular beam from the 
first three longitudinal and first four torsional 
modes, respectively.  They were also asked to 
calculate the MAC matrices for the beams.  
	 When the assignment was completed, 
students were surveyed to assess their opinions 
of the laboratory exercise.  Five choices were 
provided for each of the four questions below: 
strongly agree, agree, neutral, disagree, and 
strongly disagree.  Of the 33 students who 
responded in the spring semester of 2004 the 
majority agreed (67%) and strongly agreed 
(18%) that the demonstration helped bridge 
the gap between the theory and practice.  The 
majority of the students also agreed (61%) and 
strongly agreed (9%) that the demonstration 
enhanced their understanding of the lecture 
material presented in class.  When asked 
whether the demonstration stimulated thinking, 
49% and 27% of the students agreed and 
strongly agreed, respectively.  The introduction of 
the practical aspects of vibration measurement 
was found to be worthwhile and very worthwhile 
to 49% and 45% of the students, respectively.

9. CONCLUSIONS
	 The measured natural frequencies and 
mode shapes of the rectangular beam for 
each set of boundary conditions are in good 
agreement with the theoretical predictions.  
When the bending natural frequencies of the 
circular beam are used to determine its elastic 
modulus, the Timoshenko beam theory should 
be used.    The Timoshenko and Euler-Bernoulli 
beam theories yield essentially the same mode 
shapes for the circular beam.  The two test 
stands can be used to deliver a wide range 
of topics from the basics of vibrations to more 
advanced topics, such as Timoshenko beam 
theory, model/test correlation, and complex 
modal analysis.  Survey results show that the 
test stands provide an effective teaching tool 
for introducing undergraduate students to 
vibration measurement and experimental modal 
analysis.
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Appendix A: Euler-Bernoulli Beam Theory
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Appendix B: Timoshenko Beam Theory For The Circular Beam
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Appendix C: Theoretical Natural Frequencies And Mode Shapes For
                      Longitudinal And Torsional Vibrations Of The Circular Beam
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