
Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 58

Parametric Optimization Of Some Critical Operating
System Functions – An Alternative Approach To The Study Of 	
 Operating Systems Design

University of Bridgeport

Tarek M. Sobh, Abhilasha Tibrewal

Abstract
Operating systems theory primar-
ily concentrates on the optimal
use of computing resources. This
paper presents an alternative ap-
proach to teaching and studying
operating systems design and
concepts by way of parametrically
optimizing critical operating sys-
tem functions. Detailed examples
of two critical operating systems
functions using the presented ped-
agogical approach are included.

1. Introduction
	 The focus of this paper is to present a new
approach to teaching and studying operating
systems design and concepts by way of para-
metrically optimizing critical operating systems
functions. By using parametric optimization, the
students get an opportunity to build a strong
understanding of critical operating systems
functions and design without implementing a
real system. Moreover, the use of simulation
gives them a chance to hone their programming
skills and data structure skills as they develop
a model of the real system. Specifically, CPU
scheduling, memory management, deadlock/
synchronization primitives and disc schedul-
ing are the four specific functions studied in the
course. This paper presents the general organi-
zation of the course with in-depth discussion of
two of the critical operating system functions. All
the concerned parameters are elaborated upon,
focusing on their effect on system performance
as well as interaction with other parameters.

2. Background
	 The operating system is an essential part
of any computer system, the operating system
being the program that acts as an intermediary
between a user of the computer and the com-
puter hardware [1]. O’Gorman [2] in his paper
provides a comprehensive list of reasons for
why operating systems should be part of any
computer science curriculum. These include:

•	 Knowledge of how an operating system
does what it does

•	 Making an informed decision about selec-
tion of an operating system

•	 Improving the performance of an operating
system by adjusting values of associated
parameters

•	 Operating systems being the largest pieces
of software written provide many ideas and
techniques that can be applied in software
development

O’Gorman [2], Yun-Lin [3] and Leach [4] in their
respective papers have presented the three tra-
ditional approaches followed in the study of op-
erating systems. These can be enumerated as:

a)	High level discussion with most program-
ming done in a high level language

b)	General theoretical approach with several
real systems added as case studies

c)	Use of emulator programs which emulate
special architectures

	 Krishnamoorthy [5] in his paper describes
a course using the first approach. He reports
several advantages of involving programming
projects such as valuable implementation ex-
perience of essential features of an operating
system, testing and debugging a large program
and validation of principles of operating systems
learnt in theory.
	 Authors of several textbooks including Sil-
berschatz and Galvin [1] and Tanenbaum [6]
take the second approach in their presentation
of the material. While it is certainly a tried and
tested approach, O’Gorman [2] elaborates on
potential difficulties in integrating the case stud-
ies with the theoretical material.
	 Case studies of the third approach can be
found in the works of Oh and Mossé [7] and
Wear et al [8]. The latter enlist direct experimen-
tation with an operating system by varying basic
characteristics of the system and the job mix as
an effective method to study operating system
design. They further state that, “It is prohibitively
expensive, difficult and hazardous to allow stu-
dents to perform such experiments directly on
a functional system already allocated for other
computing uses”. These factors have been stat-
ed as the primary motivation behind designing
their operating system simulator by Wear et al [8].
	 Each of the above methods has its own
merits. The approach of parametric optimiza-
tion presented in this paper provides a healthy
balance of the advantages of each method.
Moreover, much of the operating-system theory
concentrates on the optimal use of computing

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 59

resources. The general outline of the course
is presented first followed by two detailed ex-
amples of using parametric optimization in CPU
scheduling and memory management.

3. General Outline of the Course
	 The course described here is an imple-
mentation-oriented course in the structure and
design of operating systems. The prerequisites
include courses in data structures and com-
puter architecture as well as a good knowledge
of C++. The students are free to use other high
level languages like Java and C# (C++ is stated
as a prerequisite as the introductory program-
ming courses use C++ in the curriculum). The
course is open to both undergraduate and grad-
uate students with course deliverables being
more rigorous for the graduate audience. The
students are proficient in programming by the
time they take this course in either case.
	 The underlying goal of the course is to pro-
vide practical experience for the theoretical con-
cepts of the subject. This is done by way of both
case studies of real operating systems; and
programming projects simulating the concepts
and experimenting with them. Furthermore,
laboratories assignments on both Windows NT
and Unix environments provide breadth to the
experience with real operating systems. These
include topics such as inter-process communi-
cation on the two platforms. The paper does not
discuss this part of the course in detail as stan-
dard lab manuals are used for this part. It suf-
fices to state that these labs bring in the merits
of the second approach (outlined in section 2 of
this paper) to the course.
	 The focus of this paper is the part of the
course that integrates the first and third ap-
proach (outlined in section 2 of this paper) in
form of programming assignments that simulate
critical operating system functions and para-
metrically optimize them.

4. Parametric Optimization of
 Operating Systems Modules
	 In the next three subsections, the essential
components are elaborated upon. Section 4.1
discusses the process control block, Section
4.2 elaborates on the performance parameters
and Section 4.3 introduces the different evalua-
tion techniques.

4.1. Processes and Process Control Block

	 At the heart of the operating system is the
process mix. A process is a program in execu-
tion. As a process executes, it changes state,

which is defined by that process’s current activ-
ity. A process may be in a new, ready, running,
waiting or terminated state. Each process is
represented in the operating system by its own
process control block (PCB) [9]. Figure 1 shows
typical process mix and Table 1 illustrates an
instance of a process mix.

A PCB includes the following fields:
•	 Process ID (PID): The unique identifier used

by other processes for scheduling, commu-
nication and any other purpose.

•	 Arrival Time: The time at which the process
enters the process queue for scheduling
purposes.

•	 Estimated Execution Time: Used by sched-
uling algorithms that order processes by
execution time.

•	 Priority / Process Type: Used by scheduling
algorithms that follow priority-based criterion.

•	 Size: The size of the process in bytes.

•	 Location: The memory location of a process.

•	 Program Counter Value: The address of
next instruction to be executed.

•	 Registers / Threads: The state of different
registers used by processes

•	 Needed Resources: Indicates the quanti-
ties/types of system resources needed by
a process.

In other words, a Process Control Block is a
data structure that stores certain information
about each process [9].

4.2. Performance Parameters

	 Quantifying performance is essential to op-
timization. Following are some of the common

ÿ Process ID (PID)
ÿ Arrival Time
ÿ Execution Time
ÿ Priority
ÿ Size
ÿ Location
ÿ Program Counter

Value
ÿ Registers / Threads
ÿ Needed Resources

Process ID Arrival T ime Priority E xecution
T ime

1 0 20 10

2 2 10 1

3 4 58 2

4 8 40 4

5 12 30 3

Figure 1. A Typical PCB

Table 1. A Sample Process Mix

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 60

parameters used to benchmark performance.

•	 CPU Utilization: The ratio of time that the
CPU is doing actual processing to the to-
tal CPU time observed. This is a true mea-
sure of performance since it measures the
efficiency of the system. An idle CPU has
0% CPU utilization since it offers null per-
formance per unit cost. The higher the CPU
utilization, the better the efficiency of the
system.

•	 Turnaround Time: The time between a
process’s arrival into the system and its
completion. Two related parameters that
can be studied include the average turn-
around time and maximum turnaround time.
The turnaround time includes the context
switching times and execution times. The
turnaround time is inversely related to the
system performance, i.e. lower turnaround
times imply better system performance.

•	 Waiting Time: Waiting time is the sum of the
periods spent waiting in the ready queue.
The CPU scheduling algorithm does not
affect the execution time of a process but
surely determines the waiting time. Math-
ematically, it is the difference between the
turnaround time and execution time. Like
turnaround time, it inversely affects the
system performance and has two related
forms: average waiting time and maximum
waiting time.

•	 Throughput: The average number of pro-
cesses completed per unit time. Even
though this is a reasonable measure of
operating system performance, it should
not be the sole performance criterion taken
into account. This is so because throughput
does not take into account loss of perfor-
mance caused by starvation. In the case of
starvation, the CPU might be churning out
completed processes at a very high rate
but there might be a process stuck in the
scheduler with an infinite wait time. Higher
throughput is generally considered as in-
dicative of increased performance.

•	 Response Time: The time difference be-
tween submission of the process and the
first I/O operation. It affects performance
inversely. However, it is not considered to be
a good measure and is rarely used.

4.3. Evaluation Technique

	 When developing an operating system or the
modules thereof, evaluation of its performance
is needed before it is installed for real usage.

Evaluation provides useful clues to which al-
gorithms would best serve different cases of
application [10]. There are several evaluation
techniques. Lucas (1971, as cited in [10]) sum-
marized and compared some frequently used
techniques, including cycle and times, instruc-
tion mixes, kernels, models, benchmarks, syn-
thetic programs, simulation, and monitor. All
techniques can be basically classified into three
types: the analytic method, implementation in
real time systems, and the simulation method.
	 In the analytic method, a mathematical for-
mula is developed to represent a computing
system. This method provides clear and intuitive
evaluation of system performance, and is most
useful to a specific algorithm. However, it is too
simple to examine a complex and real system.
	 Another technique is to implement an op-
erating system in a real machine. This method
produces a complete and accurate evaluation.
One of the disadvantages of this technique is
the dramatic cost associated with the imple-
mentation. In addition, evaluation is dependent
on the environment of the machine in which the
evaluation is carried out.
	 Simulation is a method that uses program-
ming technique to develop a model of a real
system. Implementation of the model with pre-
scribed jobs shows how the system works. Fur-
thermore, the model contains a number of al-
gorithms, variables, and parameters. By chang-
ing these factors in the simulation, one is able
to know how the system performance would
be affected and, therefore, to predict possible
changes in the performance of the real system.
This method has a reasonable complexity and
cost. It was viewed as the most potentially pow-
erful and flexible of the evaluation techniques
(Lucas, 1971 as cited in [10]).
	 The model for a full simulation of an oper-
ating system contains numerous parameters.
Identification of the most important parameters
in terms of system performance is useful for a
complete evaluation and for a fair design of a
real system [10].
	 The four programming projects in the course
simulate and parametrically optimize the tasks
of CPU scheduling, synchronization and dead-
lock handling, memory management and disc
scheduling in terms of the involved parameters.
The simulation technique is used to analyze
some of the stated parameters in their respec-
tive modules:

•	 CPU scheduling: round robin time quantum,
aging parameters, a-values and initial exe-
cution time estimates, preemption switches,
context switching time.

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 61

•	 Synchronization and Deadlock Handling:
total number of processes, total number of
available resources, maximum number of
resources required by the processes, rejec-
tion rate over time.

•	 Memory Management: memory size, RAM
and disc access times, compaction thresh-
olds, memory placement algorithms, page
size, page replacement algorithms, time
quantum value, fragmentation percentage
in time windows over time.

•	 Disc scheduling: disc configuration/size,
disc access time, disc scheduling algo-
rithms, disc writing mechanisms and all the
above mentioned memory management
parameters.

	 System performance is judged by many
measures, including: average turnaround time,
average waiting time, throughput, CPU utiliza-
tion, fragmentation, response time, and several
other module specific performance measures.
	 Every simulated module generates a ran-
dom process mix. Assuming that there are six
parameters in a specific module and each pa-
rameter can take ten possible values, the total
number of possible permutations becomes one
million (10x10x10x10x10x10). Furthermore,
these one million permutations are applicable to
the particular process mix only. Therefore, each
run of a specific simulated module uses the
same process mix. This enables the analysis
of the studied parameter versus performance
measures to have a uniform base for compari-
sons. An exhaustive study of all possible per-
mutations is beyond the scope of the course.
Hence, optimization of some parameters in
each module is performed to serve as a model
example.
	 The independent variables in the modules
include the studied parameters in each of the
operating system functions while the perfor-
mance measures like percentage CPU utiliza-
tion, average turnaround time, average waiting
time, throughput, fragmentation percentage,
rejection/denial rate, percentage seek time and
percentage latency time constitute the depen-
dent variables.
	 The simulation technique is used to evalu-
ate system performance in all the modules. It is
specifically used to explore the effect of param-
eters whose relation with system performance
is not proportional. Evaluation of system perfor-
mance against these parameters is conducted
by analyzing a number of sample runs of the
respective simulated modules. The parameters

are discussed in terms of their interaction with
the operating system function under study and
their resultant effect on the system perfor-
mance. Sub-sections 4.4 and 4.5 present two
of the programming projects, CPU scheduling
and memory management, in details to exem-
plify the approach. Section 4.6 discusses the
programming projects from an integrated per-
spective.

4.4. CPU Scheduling

	 An operating system must select processes
(programs in execution) for execution in some
order. The selection process is carried out by an
appropriate scheduling algorithm. CPU sched-
uling deals with the problem of deciding which
of the processes in the ready queue is to be al-
located the CPU. There are many different CPU
scheduling algorithms, for example, first come
first served, shortest job first, priority, round-
robin schemes.
	 Another class of scheduling algorithms has
been created for situations in which processes
are easily classified into different groups/types.
A multilevel queue-scheduling algorithm (see
Figure 2) partitions the ready queue into several
separate queues. The processes are assigned
to a queue, generally based on some property
of the process. Each queue has its own sched-
uling algorithm.
	 Processes are assigned to a queue depend-
ing on their type, characteristics and priority.
Queue 1 gets processes with maximum priority
such as system tasks and Queue 4 gets pro-
cesses with the lowest priority such as non-criti-
cal audio/visual tasks. The idea is to separate
processes with different CPU-burst characteristics.
	 Each queue has a different scheduling
algorithm that schedules processes for the
queue. Processes in Queue 2 get CPU time
only if Queue 1 is empty. Similarly, processes in
Queue 3 receive CPU attention only if Queue 1
and Queue 2 are empty and so forth.

Fi gure 2. A Mu lti-L evel F eedback Queue

Queue 1System Jobs Round Robin

Queue 2Computation Intense SJF with preemption

Queue 3Less intense calculation Priority-based

Queue 4Multimedia Tasks FIFO

Figure 2. A Multi-Level Feedback Queue

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 62

	 However, if the above-described method
is implemented as is, processes in queues 2,
3 and 4 have a potential of starvation in case
Queue 1 receives processes constantly. To
avoid this problem, aging parameters are taken
into account. Aging means that processes are
upgraded to the next queue after they spend
a pre-determined amount of time in their origi-
nal queue. For example, a process spends a
pre-determined amount of time unattended in
Queue 4 will be moved to Queue 3. Processes
keep moving upwards until they reach Queue
1 where they are guaranteed to receive CPU
time (or execute in other queues before reach-
ing Queue 1).
	 In general, a multilevel feedback queue
scheduler is defined by the number of queues,
the scheduling algorithm for each queue, the
method used to assign the entering processes
to the queues and the aging parameters.
	 Although a multilevel feedback queue is the
most general scheme, it is also the most com-
plex and has the potential disadvantage of high
context switching time.
	 Many of the scheduling algorithms use ex-
ecution time of a process to determine what job
is processed next. Since it is impossible to know
the execution time of a process before it begins
execution, this value has to be estimated. α, a
first degree filter, is used to estimate the execu-
tion time of a process as follows:
zn = αzn-1 + (1 - α) tn-1

where, z is estimated execution time
	 t is the actual time
	 α is the first degree filter and 0 ≤ α ≤ 1
The following example provides a deeper un-
derstanding of the issue at hand.
	 Thus, an estimated execution time for the
first process is assumed and then the filter is
used to make further estimations (see Table 2).
However, the choice of the value of α affects the
estimation process. Following is the scenario
when α takes the extreme values:

•	 α = 0 means that zn does not depend on zn-1
and is equal to tn-1

•	 α = 1 means that zn does not depend on tn-1
and is equal to zn-1

Consequently, a symbolic value of α is chosen
as a starting point to obtain f (α) i.e. the sum
of square difference (see Table 3). Further, dif-
ferentiation of this and equating it to zero gives
the value of α for which the difference between
the actual time and estimated time is minimum.
The following exemplifies α-update in the above
example.
	 In the above example, at the time of estimat-
ing execution time of P3, α is updated as follows.

The sum of square differences is given by,
SSD = (2+4α)2 + (4α2+2α-2)2 = 16α4 + 16α3 +
4α2 + 8α + 8
And, d/dx [SSD] = 0 gives us,
 8α3 + 6α2 + α + 1 = 0 	 (Equation 1)
Solving Equation 1, one gets α = 0.7916.
Now,
z3 =αz2 + (1-α) t2

Substituting values, one gets
z3 = (0.7916) 6 + (1-0.7916) 6
 = 6
Next, the parameters involved in a CPU sched-
uler using the multilevel feedback queue algo-
rithm are discussed.

4.4.1. Parameters Involved

Parameters that influence the system perfor-
mance are hereby enumerated:

•	 Time slot for the round robin queue (Queue 1)

•	 Aging time for transitions from Queue 4 to
Queue 3, Queue 3 to Queue 2 and Queue
2 to Queue 1, i.e. the aging thresholds for
FIFO, priority-based and SJF queues

•	 α-values and initial execution time esti-
mates for the FIFO, SJF and priority-based

Processes zn tn

P0 10 6

P1 8 4
P2 6 6
P3 6 4

P4 5 17
P5 11 13
P6 12 ….

Here,
a = 0.5
z0 = 10

Then by formula,
z1 = a z0 + (1-a) t0

 = (0.5) (10) + (1-0.5) (6)
 = 8

and similarly z2, z3….z6 are calculated.

zn tn Sq uare Difference

10 6

(a) 1 0 + (1-a) 6 =

6 + 4a

4 [(6+4a) – 4] 2 = (2+4a) 2

(6+4a)a + (1-a) 4

= 4a2+2a+4

6 [(4a2+2a+4) – 6]2 =

(4a2+2a-2)2

Table 2. Calculating Execution Time Estimates

Table 3. α-updating scheme

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 63

queues.

•	 Choice of preemption for the SJF and Prior-
ity based queues.

•	 Context switching time

Effect of Round Robin Time Slot: The choice
of the round robin queue can make the perfor-
mance vary widely. For example, a small time
quantum results in higher context switching
time, which in turn translates to low system
performance in form of low CPU utilization,
high turnaround times and high waiting times.
On the other hand, a big time quantum results
in FIFO behavior with effective CPU utilization,
lower turnaround and waiting times but with the
potential of starvation. Thus, finding an optimal
time slot value becomes imperative for maxi-
mum CPU utilization with lowered starvation
problem.

Effect of Aging Thresholds: A very large value
for the aging thresholds makes the waiting
and turnaround times unacceptable. These
are signs of processes nearing starvation. On
the other hand, a very small value makes it
equivalent to one round robin queue. Zhao [11]
enumerates the aging parameters of 5, 10 and
25 for the SJF, Priority-based and FIFO queues
respectively as the optimal aging thresholds for
the specified process mix. Some of the process
mix specifications being: process size vary from
100KB to 3MB; estimated execution time range
from 5 to 35ms; priority values vary from 1 to 4;
memory size is 16MB; disc drive configuration
is 8 surfaces, 64 sectors and 1000 tracks.

Effect of α-values and initial execution time es-
timates: Su [10] has studied the effect of pre-
diction of burst time on system performance
of a simulated operating system as part of her
study. She has used an α update scheme as
was previously discussed. For her specified pro-
cess mix, she reports that the turnaround time
obtained from predicted burst time is signifi-
cantly lower than the one obtained by randomly
generated burst time estimates. The α value is
recomputed/updated after a fixed number of it-
erations.

Effect of choice of preemption: Preemption
undoubtedly increases the number of context
switches, and increased number of context
switches inversely affects the efficiency of the
system. However, preemptive scheduling has
been shown to decrease waiting and turnaround
time measures in certain instances [1]. There
are two preemption switches involved in this
module, one for the SJF queue (Queue 2) and
the other for the priority-base queue (Queue 3).

In SJF scheduling, the advantage of choosing
preemption over non-preemption is largely de-
pendent on the CPU burst time predictions, but
that is a difficult proposition in itself.

Effect of Context Switching Time: An increas-
ing value of context switching time inversely
affects the system performance in an almost
linear fashion. The context switching time tends
to affect system performance inversely. As the
context switching time increases, so does the
average turnaround and average waiting time.
The increase of the context switching time pulls
down the CPU utilization.

In keeping with the above discussion, the simu-
lation of the above module and the analysis of
the collected data focus on the optimal round
robin time quantum and effect of the a-updat-
ing scheme.

4.4.2. Simulation Specifications and Method
of Data Collection

	 The implemented multi-level feedback queue
scheduler consists of four linear queues, the first
is FIFO, the second queue is priority-based, the
third one is SJF and the fourth (highest priority)
is round robin. Feedback occurs through aging;
aging parameters differ, i.e., each queue has a
different aging threshold before a process can
migrate to a higher priority queue. Processes
are assigned to one of the queues upon entry.
A process can migrate between the various
scheduling queues based on the aging param-
eter of the queue it was initially assigned.
	 Round robin time quantum, the preemptive
switches for the SJF and priority-based queues,
aging parameters for the SJF, priority-based
and FIFO queues, context switching time, initial
execution time estimates and α values for the
FIFO, SJF and priority queues are some of the
independent variables in this module. To opti-
mize any one of them, every other parameter
is kept fixed and the studied parameter varied.
Optimization of the round robin time and the
effect of the α update scheme is attempted to
serve as a model. Thus, the round robin time
was the variable parameter in this case and
all other parameters were fixed parameters.
The dependent variables of the module are the
performance measures: average turnaround
time, average waiting time, CPU utilization and
throughput.
	 Data was collected by means of multiple
sample runs. The output from the sample run
indicates a timeline, i.e. at every time step, it
indicates which processes are created (if any),
which ones are completed (if any), processes

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 64

which aged in different queues. The following
excerpts from an output file (see Figure 3) il-
lustrate the aging of process 1 from the priority
based queue to the SJF queue (the aging pa-
rameter for Queue 3 was set to be 3 in this run).
Figure 3, part (a) shows process mix snapshot
at time step 1. Five processes are created at
this instance and the PCB parameters for pro-
cess number 1 are displayed. Part (b) illustrates
the contents of the queue at this time step.
Process 1 is assigned to the priority queue.
Given an aging parameter of 3 for the priority
queue, process 1 should migrate to the SJF
queue at time step 4 unless it finishes execu-
tion before that. Snapshots at time step 2 (part
(c)) and time step 3 (part (d)) show that process
2 and process 6 get CPU attention since they
are in the round robin queue (queue with high-
est priority). Therefore, process 1 does not get
the opportunity to execute and migrates to the
SJF queue at time step 4 (part (e)). Part (f) il-
lustrates the completion of process 8 and inclu-
sion of the same in the done queue. A complete
walkthrough of this sample run for this module
is included in Appendix A.

4.4.3. Simulation Results and Discussion

	 Table 4 and the corresponding charts (Fig-
ure 4 (a) – (d)) illustrate the effect of varying
the round robin quantum time over the various
performance parameters. This parameter plays
a critical role as, whenever present, it is the pro-
cesses in this queue that are being scheduled
for execution.

Figure 3. Snapshot of process mix at time steps 1-5

R R TimeSl ot Av.Turnaround Time Av. Waiting Time CPU Utilization Throughput
2 19.75 17 66.67 % 0.026
3 22.67 20 75.19 % 0.023
4 43.67 41 80.00 % 0.024
5 26.5 25 83.33 % 0.017
6 38.5 37 86.21 % 0.017

Table 4. Effect of Round Robin Time Slot on the Performance Parameters

(a) (b)

(d)(c)

0

50

RRTimeSlot vs. Average
Turnaround Time

RRTimeSlot

Av.Turnaround

Time 0

50

RRTimeSlot vs. Average Waiting

Time

RRTimeSlot

Av. Waiting

Time

0

50

100

RRTimeSlot vs. CPU Utilization

RRTimeSlot

CPU

Utilization

RRTimeSlot vs. Throughput

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

RRTimeSlot

Throughput

Figure 4. Charts illustrating effect of round
robin quantum over performance measures

Figure 4. Charts illustrating effect of round robin quantum
 over performance measures

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 65

	 It can be clearly seen from the Table 4 how
the time slot of the round robin queue affects
the various performance parameters. While the
throughput is observed to be inversely propor-
tional, the other three performance measures
seem to be directly proportional. In other words,
with increasing the time slot the round robin
queue moves towards the behavior of a FIFO
queue with high average turnaround times and
average waiting times. The throughput decreas-
es but the percentage CPU utilization improves
at a steady rate.
	 Since the round robin is the highest prior-
ity queue in the multilevel feedback queue
scheduler, it has the greatest influence over the
scheduler performance. With CPU utilization of
80% and throughput of 0.024, time slot value of
4 time units comes out to be the optimal value
in this simulation for the specific process mix.
	 Next the effect of α updating on the system
performance is illustrated. Table 5 compares the
performance measures as the value of round
robin time slot is varied with α updated at regu-
lar intervals. The performance measure values
in the bracket are the corresponding values
when the α updating scheme was not imple-
mented.
	 As is evident from Table 5, α updating did not
affect system performance in this case. Again,
the result is specific for this particular process
mix.
	 To summarize, it is the optimal value of the
round robin quantum along with smallest pos-
sible context switching time that tends to maxi-
mize performance in context of CPU scheduling
in this simulation, α-updating did not tend to af-
fect performance.

4.5. Memory Management

	 Memory is an important resource that must
be carefully managed. The part of the operat-
ing system that manages memory is called
the memory manager. Memory management
primarily deals with space multiplexing. All the
processes need to be scheduled in such a way
that all the users get the illusion that their pro-
cesses reside on the RAM. Spooling enables
the transfer of a process while another process
is in execution. The job of the memory manager
is to keep track of which parts of memory are in
use and which parts are not in use, to allocate
memory to processes when they need it and
deallocate it when they are done, and to man-
age swapping between main memory and disc
when main memory is not big enough to hold all
the processes.
	 Three disadvantages related to memory

management are:

•	 the synchronization problem

•	 the redundancy problem

•	 the fragmentation problem

The first two are discussed below and the frag-
mentation problem is elaborated upon a little
later.
	 Spooling, as stated above, enables the
transfer of one or more processes while another
process is in execution. It aims at preventing the
CPU from being idle, thus, managing CPU uti-
lization more efficiently. The processes that are
being transferred to the main memory can be
of different sizes. When trying to transfer a very
big process, it is possible that the transfer time
exceeds the combined execution time of the
processes in the RAM. This results in the CPU
being idle which was the problem for which
spooling was invented. This problem is termed
as the synchronization problem. The reason
behind it is that the variance in process size
does not guarantee synchronization.
	 The combined size of all processes is usu-
ally much bigger than the RAM size and for this
very reason processes are swapped in and out
continuously. The issue regarding this is the
transfer of the entire process when only part of
the code is executed in a given time slot. This
problem is termed as the redundancy prob-
lem.
	 There are many different memory manage-
ment schemes. Memory management algo-
rithms for operating systems range from the
single user approach to paged segmentation.
Some important considerations that should be
used in comparing different memory manage-
ment strategies include hardware support, per-
formance, fragmentation, relocation, swapping,
sharing and protection. The greatest determi-
nant of any method in a particular system is the
hardware provided.
	 Fragmentation, Compaction and Paging:
Fragmentation is encountered when the free
memory space is broken into little pieces as

R R TimeSl ot Av.Turnaround Time Av. Waiting Time CPU Utilization Throughput
2 19.75 (19.75) 17 (17) 66.67 (66.67) % 0.026 (0.026)
3 22.67 (22.67) 20 (20) 75.19 (75.19)% 0.023 (0.023)
4 43.67 (43.67) 41 (41) 80.00 (80.00)% 0.024 (0.024)
5 26.5 (26.5) 25 (25) 83.33 (83.33)% 0.017 (0.017)
6 38.5 (38.5) 37 (37) 86.21 (86.21)% 0.017 (0.017)

Table 5. Comparing performance measures of a CPU scheduler with
 α-update and one with no α-update (the values for the scheduler 	
 with no α-update is in brackets)

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 66

processes are loaded and removed from mem-
ory. Fragmentation can be internal or external.
	 Consider a hole of 18,464 bytes as shown
in Figure 5. Suppose that the next process re-
quests 18,462 bytes. If exactly the requested
block is allocated, one is left with a hole of 2
bytes. The overhead to keep track of this hole
will be substantially larger than the hole itself.
The general approach is to allocate very small
holes as part of the larger request. Thus, the
allocated memory may be slightly larger then
the requested memory. The difference between
these two numbers is internal fragmentation –
memory that is internal to a partition, but is not
being used [1]. In other words, unused memory
within allocated memory is called internal frag-
mentation [12].
	 External fragmentation exists when enough
total memory space exists to satisfy a request,
but it is not contiguous; storage is fragmented
into a large number of small holes. In Figure 6
two such cases can be observed. In part (a),
there is a total external fragmentation of 260K,
a space that is too small to satisfy the requests
of either of the two remaining processes, P4 and
P5. In part (c), however, there is a total external
fragmentation of 560K. This space would be
large enough to run process P5, except that this
free memory is not contiguous. It is fragmented
into two pieces, neither one of which is large
enough, by itself, to satisfy the memory request
of process P5. This fragmentation problem can
be severe. In the worst case, there could be a
block of free (wasted) memory between every
two processes. If all this memory were in one
big free block, a few more processes could be
run. Depending on the total amount of memory
storage and the average process size, external
fragmentation may be either a minor or major
problem.
	 One solution to the problem of external frag-
mentation is compaction. The goal is to shuffle
the memory contents to place all free memory
together in one large block. The simplest com-
paction algorithm is to move all processes to-
ward one end of the memory, and all holes in
the other direction, producing one large hole
of available memory. Figure 7 shows different
ways to compact memory. Selecting an optimal
compaction strategy is quite difficult.
	 Compaction is an expensive scheme. Given
a 128 MB RAM and an access speed of 10ns
per byte of RAM, the compaction time becomes
twice the product of the two, in this case, 2.56
seconds (2 x 10 x 10-9 x 128 x 106). Supposing,
a round robin scheduling algorithm were used
with a time quantum of 2ms, the above compac-

tion time turns out to be equivalent to 1280 time
slots.
	 Compaction is usually defined by the follow-
ing two thresholds:

•	 Memory hole size threshold: If the sizes of
all the holes are at most a predefined hole
size, then the main memory undergoes
compaction. This predefined hole size is
termed as the hole size threshold. For ex-
ample, if there are two holes of size ‘x’ and
size ‘y’ respectively and the hole threshold
is 4KB, then compaction is done provided x
<= 4KB and y<=4KB.

•	 Total hole percentage: The total hole per-

operating sy stem

P7

P43

Figure 5. Internal fragmentation

H ole of
18,464 bytes

N ext request is
for 1 8,462 bytes

400K

1000K

2000K

2300K

2560K

400K

1000K

P 2 termi na tes

2000K

2300K

2560K

OS

P1

P2

P3

OS

P1

P3

400K

1000K

all ocate P4
 1700K
 2000K

2300K

2560K

OS

P1

P4

P3

N OTE :
 P 5 of size
500K cann ot
be all ocated
due to
ex ternal
fr agmentation

Figure 5. Internal fragmentation

Figure 6. External Fragmentation

Figure 7. Different ways to compact memory

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 67

centage refers to the percentage of total
hole size over memory size. Only if it ex-
ceeds the designated threshold, compac-
tion is undertaken. Taking the two holes with
size ‘x’ and size ‘y’ respectively, total hole
percentage threshold equal to 6%, then for
a RAM size of 32MB, compaction is done
only if (x + y)> = 6% of 32MB.

	 Another possible solution to the external
fragmentation problem is to permit the physi-
cal address space of a process to be noncon-
tiguous, thus allowing a process to be allocated
physical memory wherever the latter is avail-
able. One way of implementing this solution is
through the use of a paging scheme. Paging is
discussed in greater details a little later in this
section.
	 Memory Placement Algorithms: A fitting al-
gorithm determines the selection of a free hole
from the set of available holes. First-fit, best-fit,
and worst-fit are the most common strategies
used to select a free hole.

•	 First-fit: Allocate the first hole that is big
enough. Searching can start either at the
beginning of the set of holes or where the
previous first-fit search is ended. Searching
stops as soon as a large enough free hole
is found.

•	 Best-fit: Allocate the smallest hole that
is big enough. The entire list needs to be
searched, unless the list is kept ordered by
size. This strategy produces the smallest
leftover hole.

•	 Worst-fit: Allocate the largest hole. Again,
the entire list has to be searched, unless it
is sorted by size. This strategy produces the
largest leftover hole, which may be more
useful than the smaller leftover hole from a
best-fit approach.

	 If memory is lost due to internal fragmenta-
tion, the choice is between first fit and best fit. A
worst fit strategy truly makes internal fragmen-
tation worse. If memory is lost due to external
fragmentation, careful consideration should be
given to a worst-fit strategy [12].

4.5.1. Continuous Memory Allocation 	
 Scheme

	 The continuous memory allocation scheme
entails loading of processes into memory in a
sequential order. When a process is removed
from main memory, new processes are loaded
if there is a hole big enough to hold it. This algo-
rithm is easy to implement, however, it suffers
from the drawback of external fragmentation.

Compaction, consequently, becomes an inevi-
table part of the scheme.

4.5.1.1. Parameters Involved

Some of the parameters that influence the sys-
tem performance in terms of memory manage-
ment are hereby enumerated:

•	 Memory size

•	 RAM access time

•	 Disc access time

•	 Compaction algorithms

•	 Compaction thresholds – Memory hole-size
threshold and total hole percentage

•	 Memory placement algorithms

•	 Round robin time slot (in case of a pure
round robin scheduling algorithm)

Effect of Memory Size: As anticipated, the
greater the amount of memory available, the
higher would be the system performance.

Effect of RAM and Disc access time: The higher
the values of the access times, the lower the
time it would take to move processes from main
memory to secondary memory and vice-versa
thus increasing the efficiency of the operating
system. Disc access time is composed of three
parts seek time, latency time and transfer rate.
The RAM access time plays a crucial role in the
cost of compaction. Compaction entails access-
ing each byte of the memory twice, thus, the
faster the RAM access, the lower would be the
compaction times.

Effect of Compaction Algorithms: Choosing an
optimal compaction algorithm is critical in mini-
mizing compaction cost. However, selecting an
optimal compaction strategy is quite difficult.

Effect of the Compaction Thresholds: The effect
of compaction thresholds on system perfor-
mance is not as straightforward and has seldom
been the focus of studies in this field. Optimal
values of hole size threshold largely depend on
the size of the processes since it is these pro-
cesses that have to be fit in the holes. Thresh-
olds that lead to frequent compaction can bring
down performance at an accelerating rate since
compaction is quite expensive in terms of time.

Effect of Memory Placement Algorithms Silber-
schatz and Galvin in [1] state that simulations
have shown that both first-fit and best-fit are
better than worst-fit in terms of decreasing both
time and storage utilization. Neither first-fit nor
best fit is clearly best in terms of storage utiliza-
tion, but first-fit is generally faster.

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 68

Effect of Round Robin Time Slot: Best choice for
the value of time slot would be corresponding to
transfer time for a single process (see Figure 8).
For example, if most of the processes required
2ms to be transferred, then a time slot of 2ms
would be ideal. Hence, while one process com-
pletes execution, another has been transferred.
However, the transfer times for the processes in
consideration are seldom a normal or uniform
distribution. The reason for the non-uniform dis-
tribution is that there are many different types of
processes in a system. The variance as depict-
ed in Figure 8 is too much in a real system and
makes the choice of time slot a difficult proposi-
tion to decide upon.

	 In keeping with the above discussion, the
simulation of the above module and the analy-
sis of the collected data focus on the optimal
round robin time quantum, the memory place-
ment algorithms and fragmentation percentage
as a function of time.

4.5.1.2. Simulation Specifications and Meth-
od of Data Collection

The attempted simulation implements a mem-
ory manager system. The implemented system
uses a continuous memory allocation scheme.
This simulation uses no concept of paging what-
soever. Round robin mechanism is the scheme
for process scheduling.

Following are the details of the involved inde-
pendent variables:
Fixed parameters:

•	 Memory Size (32 MB)
•	 Disc access time (1ms (estimate for la-

tency and seek times) + (job size (in
bytes)/500000) ms)

•	 Compaction threshold (6% and hole size =
50KB)

•	 RAM Access Time (14ns)
	 Variable parameters:
•	 Fitting algorithm (a variable parameter

– First Fit, Best Fit, Worst Fit)
•	 Round Robin Time Slot (a variable param-

eter, multiple of 1ms)

	 In addition to the above enumerated pa-
rameters, the process sizes range from 20KB
to 2MB (multiple of 10KB) and the process
execution times vary from between 2 ms to 10
ms (multiple of 1ms). The disc size is taken as
500MB and is half filled with jobs at the begin-
ning of the simulation.
	 In context of memory management, com-
paction is the solution for fragmentation. How-
ever, compaction comes at its own cost. Moving
all holes to one end is an expensive operation.

To quantify this parameter, percentage of com-
paction time against total time is a performance
measure that has been added in this module.
This measure along with all the other perfor-
mance measures constitutes the dependent
variables in this module.
	 Data was collected by means of multiple
sample runs. A walkthrough of a sample run for
this module is included in Appendix B.

Ideal Process Si ze Graph R ealistic Process Si ze Graph

 Time slot corresponding to this size transfer time

Figure 8. Ideal Process Size Graph and Realistic Process Size Graph

Process size Process size

Numb er of processes Numb er of processes

Figure 8. Ideal Process Size Graph and Realistic Process Size Graph

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 69

4.5.1.3. Simulation Results and Discussion

The round robin time quantum is one of the two
variable parameters studied in this simulation.
	 Table 6 and Figure 9 illustrate the effect of
varying the round robin quantum time over the
various performance parameters in context of
the first fit algorithm.
	 The trends of increasing throughput and
increasing turnaround and waiting times are
in keeping with round robin scheduling mov-
ing towards FIFO behavior with increased time
quantum. However, one observes that the CPU
utilization is declining with increase in time slot
values. This can be attributed to the expense of
compaction. Analyzing the fragmentation per-
centage, it looks like a time slot value of 2 time
units is particularly favorable to the same.

The simulation data collected to compare the
three memory placement algorithms by study-
ing the effect of varying round robin time slot
over the performance measures for each of the
algorithms is given in Table 7 and Figure 10
((a) to (e)).
	 For this particular process mix, best-fit and
worst-fit memory placement algorithms gave
identical results. None of the memory placement
algorithms emerged as a clear winner. However,
best-fit and worst-fit algorithms seemed to give
more stable fragmentation percentage in the
simulations. The aspect of first-fit being faster
did not surface in the results due to the nature of
the implementation. In the implementation, the
worst-fit and best-fit algorithms scan the hole
list in one simulated time unit itself. In reality,
however, scanning entire hole list by best-fit and
worst-fit would make them slower that first-fit,
which needs to scan the hole list only as far as it
takes to find the first hole that is large enough.
	 Fragmentation percentage in a given time
window over the entire length of the simulation
was also studied. The entire simulation was di-
vided into twenty equal time windows and the
fragmentation percentage computed for each of

ever, as is illustrated later, paging requires more

Effect of Round Robin Time Quantum over

Performance Measures

0

2

4

6

8

10

12

14

16

18

2 3 4 5

Time Slot

Average Waiting

Time

Average

Turnaround Time

CPU Utilization

Throughput

Memory

Fragmentation

Percentage

T ime

Sl ot

Average

Waiting
T ime

Average

T urnaround
T ime

CPU

Utilization

T hroughput

Measure

Memory

fragmentation
percentage

2 3 4 5% 5 29%

3 4 4 2% 8 74%

4 5 6 3% 12 74%

5 12 12 1% 17 90%

Avera ge Turnar ound

Time

Avera ge W aiting Tim e CP U Utilizat ion Throughput Fragme ntation%RR

Time

Slot First

fit

Bes t

fit

Wors

t fi t

First

fit

Bes t

fit

W ors

t fit

First

fit

Bes t

fit

W orst

fit

First

fit

Bes t

fit

W orst

fit

First

fit

Bes t

fit

W ors

t fi t

2 4 3 3 3 2 2 1% 1% 1% 5 5 5 82 74 74

3 4 4 4 4 4 4 2% 2% 2% 8 8 8 74 74 74

4 6 6 6 5 6 6 3% 2% 2% 12 11 11 74 74 74

5 12 6 6 12 5 5 1% 2% 2% 17 14 14 90 79 79

Figure 9. Effect of Round Robin Time Quantum over Performance Measures

Table 7. Comparing Memory Placement Algorithms

Table 6. Round Robin Time Quantum vs. Performance Measures

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 70

% Fragmentation vs. Round Robin Time
Slot for three memory placement

algorithms

0%

20%

40%

60%

80%

100%

1 2 3 4

Round Robin Time Slot

%Fragmentation

Fragmentation
% First-fit

Fragmentation
% Best-fit
Fragmentation
% Worst-fit

 2 3 4 5

CPU utilization vs. Round Robin Slot for
three memory placement algorithms

0%

1%

1%

2%

2%

3%

3%

4%

1 2 3 4
Round Robin Time Slot

CPU utilization
CPU utilization
First-fit

CPU utilization
Best-fit
CPU utilization
Worst-fit2 3 4 5

Throughput vs. Round Robin Time Slot
for three memory placement algorithms

0

5

10

15

20

1 2 3 4

Round Robin Time Slot

Throughput

Throughput
First-fit

Throughput
Best-fit

Throughput
Worst-fit

2 3 4 5

Average Turnaround Time vs. Round
Robin Time slot for three memory

placement algorithms

0
2
4
6
8

10
12
14

1 2 3 4

Round Robin Time Slot

Average Turnaround

Time

Average
Turnaround
Time First-
fit

Average
Turnaround
Time Best-
fit

Average
Turnaround
Time Worst-
fit

2 3 4 5

Average Waiting Time vs. Round Robin
Time Slot for three memory placement

algorithms

0
2

4
6
8

10

12
14

1 2 3 4

Round Robin Time Slot

Average Waiting Time

Average
Waiting Time
First-fit
Average
Waiting Time
Best-fit

Average
Waiting Time
Worst-fit2 3 4 5

Figure 10. Comparing Memory
Placement Algorithms

(a) Avera ge Turnaround
time

(b) Avera ge Waiting Time
(c) CPU utilization
(d) Throughput
(e) % Fragmentation

%Fragmentation

Time Window Time Slot = 2 Time Slot = 3 Time Slot = 4 Time Slot = 5

1 0.34 0.30 0.27 0.27

2 0.79 0.45 0.45 0.41

3 3.70 0.85 0.73 0.45

4 4.00 3.00 1.90 0.79

5 8.90 5.20 3.60 2.40

6 8.10 7.70 7.70 4.40

7 8.30 6.40 7.70 9.10

8 8.30 3.60 5.60 2.20

9 9.00 3.60 3.60 3.60

10 8.40 3.60 3.60 5.50

11 8.40 3.60 3.60 6.70

12 8.40 3.60 3.60 6.70

13 8.40 3.60 3.60 7.20

14 8.40 3.60 3.60 7.10

15 8.40 3.60 3.60 10.00

16 8.40 3.60 3.60 11.00

17 8.40 3.60 3.60 10.00

18 8.40 3.60 3.60 9.50

19 8.40 3.60 3.60 7.30

20 8.40 3.60 3.60 7.30

Figure 10. Comparing Memory Placement Algorithms

Table 8. Fragmentation percentage over time

the time windows. The trend was studied for four
different values of round robin time slot. Since
the total hole size percentage threshold was
specified as 6%, time frames with fragmenta-
tion percentage values higher than that were
candidates for compaction [see Table 8 and Fig-
ure 11]. However, compaction was undertaken
in any of the above candidate frames only if the
hole size threshold specification was also met.
	 Looking at Figure 11, one can say that while
compaction (if done) for time slot values of 3
and 4 was done in time frames 6 and 7, that for
time slot value of 5 was undertaken in the latter
half of the simulation.
	 To summarize, two time units emerged as
the optimal time quantum value but none of the
memory placement algorithms could be termed
as optimal. Studying the fragmentation percent-
age over time gave us the probable time win-
dows where compaction was undertaken.

4.5.2. Paging Scheme

	 Paging entails division of physical memory
into many small equal-sized frames. Logical
memory is also broken into blocks of the same
size called pages. When a process is to be ex-
ecuted, its pages are loaded into any available
memory frames. In a paging scheme, external
fragmentation can be totally eliminated. How-

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 71

than one memory access to get to the data.
Also, there is the overhead of storing and up-
dating page tables.
	 In paging, every address generated by the
CPU is divided into two parts: a page number
and a page offset. The page number is used as
an index into a page table. The page table con-
tains the base address of each page in physical
memory. This base address is combined with
memory address. Two of the more significant
parameters in a paging scheme are: page size
and page replacement algorithms.
	 Hereby, a paging example with a 64MB
RAM and 2KB page size is discussed. 64MB
(226) memory size can be represented by 26
bits. Likewise, a 2KB page can be represented
by 11 bits. Thus, for the page table [see Figure
12], 15 bits are needed for the page number
and 11 bits for the page offset. Since there are
215 pages, there shall be 215 entries in the page
table. Therefore,

Size of page table = 215 x 30 bits ≈ 123KB
In the above example, if the page size were
1KB, then a 16 bit page number and 10 bit
offset would be needed to address the 64MB
RAM. In this case,
Size of page table = 216 x 32 bits = 256KB

Consequently, it can be said that a smaller page
size results in larger sized page tables and the
page table size becomes an overhead itself.
	 Fragmentation, synchronization and redun-
dancy as discussed in the previous section
are three problems that need to be addressed
in a memory management setting. In a paging
scheme, there is no external fragmentation.
However, internal fragmentation exists. Suppos-
ing the page size is 2KB and there exists a pro-
cess with size 72,700 bytes. Then, the process
needs 35 pages and 1020 bytes. It is allocated
36 pages with an internal fragmentation of 1028
bytes (2048 – 1020). If the page size were 1KB,
the same process would need 70 pages and
1020 bytes. In this case, the process is allocat-
ed 71 pages with an internal fragmentation of 4
bytes (1024 – 1020). Thus, a smaller page size
is more favorable for reduced internal fragmen-
tation.
	 In the worst case scenario, a process needs
‘n’ pages and 1 byte, which results in an internal
fragmentation of almost an entire frame. If pro-
cess size is independent of page size, then
	 Average internal fragmentation = ½ x page
size x number of processes
	 Hence, it can be observed that a large page
size causes a lot of internal fragmentation. On
the other hand, a small page size requires a

large amount of memory space to be allocat-
ed for page tables. One simple solution to the
problem of large size page tables is to divide
the page table into smaller pieces. One way is
to use a two-level paging scheme, in which the
page table itself is also paged. However, multi-
level paging comes with its own cost – an added
memory access for each added level of paging.
	 Anticipation and page replacement deals
with algorithms to determine the logic behind
replacing pages in main memory. A good page
replacement algorithm has a low page-fault
rate. Some common page replacement algo-
rithms are as follows.

Time Stamp Algorithms
•	 FIFO: A FIFO replacement algorithm asso-

ciates with each page the time when that
page was brought into memory. When a
page must be replaced, the oldest is chosen.

•	 LRU: Least Recently Used (LRU) algorithm
associates with each page the time of that
page’s last use. When a page must be re-
placed, LRU chooses the page that has not
been used for the longest time.

Count based Algorithms
•	 LFU: The least frequently used (LFU) al-

gorithm requires that the page with the
smallest count be replaced. The reason for
this selection is that an actively used page
should have a large reference count.

•	 MFU: The most frequently used (MFU) al-
gorithm requires that the page with the larg-
est count be replaced. The reason for this
selection is that the page with the smallest
count was probably just brought in and has
yet to be used. 	

Fragmentation percentage over time

0.00

5.00

10.00

15.00

1 4 7 10 13 16 19
Time window

% Fragmentation

Time Slot = 2

Time Slot = 3

Time Slot = 4

Time Slot = 5

Figure 12. A Page Table

15bits 15bits

215

entries

000…0 0
.
.
.
.
.
.
111…1 1

Figure 11. Fragmentation percentage over time

Figure 12. A Page Table

ever, as is illustrated later, paging requires more

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 72

Continuous Memory Allocation versus Paging
Allocation

Table 9 gives a comparison between the two
studied memory management schemes.

4.5.2.1. Parameters Involved

	 The new parameters involved in this memo-
ry management scheme are:

•	 Page Size

•	 Page Replacement Algorithms

Effect of Page Size: A large page size causes
a lot of internal fragmentation. This means that,
with a large page size, the paging scheme
tends to degenerate to a continuous memory
allocation scheme. On the other hand, a small
page size requires large amounts of memory
space to be allocated for page tables. Finding
an optimal page size for a system is not easy as
it is very subjective dependent on the process
mix and the pattern of access.

Effect of Page Replacement Algorithms: Least-
recently used, first-in-first-out, least-frequently
used and random replacement are four of the
more common schemes in use. The LRU is of-
ten used as a page-replacement algorithm and
is considered to be quite good. However, an
LRU page-replacement algorithm may require
substantial hardware assistance.
To study the effects of the above parameters
on system performance, a new performance
measure, namely replacement ratio percent-
age, is added to the usual list of performance
measures. The replacement ratio percentage
quantifies page replacements. It is the ratio of
the number of page replacements to the total
number of page accesses.

3.3.2.2. Implementation Specifics

	 Though paging was not attempted as part
of this study, the implementation specifics of
Zhao’s study [11] are included here to illustrate
one sample implementation.
	 Zhao, in his study, simulated an operating
system with a multilevel feedback queue sched-
uler, demand paging scheme for memory man-
agement and a disc scheduler. A set of generic
processes was created by a random generator.
Ranges were set for various PCB parameters
as follows:

•	 Process size: 100KB to 3MB

•	 Estimated execution time: 5 to 35ms

•	 Priority: 1 to 4

A single level paging scheme was implemented.

Continuous Memory A llocation Scheme Paged A llocation Scheme

Advantages:

• An easy algorithm for implementation
purposes.

Advantages:

• No external fragmentation, therefore,
no compaction scheme is required.

Disadvantages:
• Fragmentation problem makes

compaction an i nevitable part.
Compaction in itself is an e xpensive

proposition in terms of time.

Disadvantages:
• Storage for page tables.
• Addressing a memory location in

paging scheme needs more than one

access depending on the levels of
paging.

A memory size of 16MB was chosen and the
disc driver configuration: 8 surfaces, 64 sectors
and 1000 tracks was used.
	 Four page replacement algorithms: LRU,
LFU, FIFO, random replacement and page size
were chosen as the independent variables in
context to paging. The dependent variables for
the study were average turnaround time and re-
placement percentage.

4.5.2.3. Implementation Results

	 The data in Table 10 (taken from Zhao’s
study [11]) show the effect of replacement algo-
rithms on the replacement ratio.
	 After having found the optimal values of
all studied parameters except page size in his
work, Zhao used those optimal values for 1000
simulations each for a page size of 4KB and
8KB. The latter emerged as a better choice.
	 In his work, Zhao concludes that 8KB page
size and the LRU replacement algorithms con-
stitute the parametric optimization in context to
paging parameters for the specified process
mix.

4.6. Integrated Perspective

	 The first programming project in the course
starts with CPU scheduling, as it is the most
elementary and closest to the concept of pro-
cess and process-mix. Next, the topic of pro-

Scheme FIFO L RU L FU R andom

R eplacement R atio % 31 30 37 31

Table 9. Comparing continuous memory allocation scheme with paged allocation

Table 10. Page Replacement Scheme vs. Replacement Ratio percentage

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 73

cess synchronization and deadlock handling
is undertaken. The class then implements the
memory management module, where the simu-
lation integrates CPU scheduling with memory
management. The CPU scheduling algorithm
chosen, however, is round robin algorithm in-
stead of the multi-level feedback queue. The
final programming project is built on the imple-
mentation of memory management module by
integrating disc scheduling into the same. In
other words, the implementation under the disc
scheduling module can also be viewed as an
operating system that uses round robin algo-
rithm for CPU scheduling, continuous memory
allocation scheme for memory management
and has a disc scheduling mechanism.

The parameters of this integrated system are,
hereby, enumerated:

•	 Time slot for the round robin queue

•	 Aging time for transitions from Queue 4 to
Queue 3, Queue 3 to Queue 2 and Queue
2 to Queue 1 i.e. the aging thresholds for
FIFO, priority-based and SJF queues

•	 α-values and initial execution time esti-
mates for the FIFO, SJF and priority-based
queues.

•	 Choice of preemption for the SJF and Prior-
ity based queues.

•	 Context switching time

•	 Memory size

•	 RAM access time

•	 Compaction algorithm

•	 Compaction thresholds – Memory hole-size
threshold and total hole percentage

•	 Memory placement algorithms – first-fit,
best-fit, worst-fit

•	 Disc access time (seek time, latency time
and transfer time)

•	 Disc configuration

•	 Disc scheduling algorithm – FIFO, SSTF,
LOOK, C-LOOK, SCAN, C-SCAN

•	 Disc writing mechanism

	 Next comes the issue of optimizing the sys-
tem and coming up with the right permutation of
design parameters to achieve excellent perfor-
mance measures. As was discussed earlier in
the paper, even if six of the above mentioned
parameters have ten possible values, then a
million permutations are possible. Furthermore,
the results obtained from these permutations
are applicable to one particular process mix only.

	 Thus, only the optimal values for the param-
eters that have been studied as variable inde-
pendent parameters in the individual modules
are enumerated. Such a set would include:
round robin time – 4ms, a-updating scheme
– no effect, memory placement algorithm – best
fit from the two modules presented here as well
as optimal values for disc scheduling algorithm,
average seek time, average latency time and
sector size from the disc scheduling module.
The values of the fixed independent variables of
the four modules are: RAM size – 32MB, Com-
paction thresholds – 6% and hole size = 50KB,
RAM access time – 14ns, Disc configuration – 8
surfaces, 300 tracks/surface, disc access time
– (seek + latency + job size (in bytes)/50000)
ms. The above stated optimal values are perti-
nent to a particular process mix only.

5. Conclusion
	 The format of teaching operating systems
described in this paper has been followed in the
department for several years now. While stan-
dard lab exercises enable students to gain ex-
perience with Windows NT and UNIX systems,
parametric optimization of major operating sys-
tem functions provide implementation-oriented
analytic insight into operating system essentials
such as CPU scheduling, deadlock handling,
memory management and disc scheduling.

6. References
1.	 Silberschatz, A., Galvin, P.B. (1999). Oper-

ating System Concepts (5th ed.). New York:
John Wiley & Sons, Inc.

2.	 O’Gorman, J., Teaching Operating Sys-
tems, SIGCSE Bulletin, Vol. 30, June 1998,
No. 2, pp. 61-63.

3.	 Yun-Lin, S., On Teaching Operating Sys-
tems, SIGCSE Bulletin, Vol. 21, Sept 1989,
No. 3, pp. 11-14.

4.	 Leach, R., An Advanced Operating Sys-
tems Project Using Concurrency, SIGCSE
Bulletin, Vol. 22, Sept 1990, No. 3, pp. 39-
44.

5.	 Krishnamoorthy, S., An Experience Teach-
ing Operating Systems Course With A Pro-
gramming Project, Journal of Computing
Sciences in Colleges, Vol. 17, May 2002,
No. 6, pp. 25-38.

6.	 Tanenbaum, A.S. (1987). Operating Sys-
tems Design and Implementation. New
Jersey: Prentice-Hall, Inc.

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 74

7.	 Oh, J. C. and Mossé, D., Teaching Real
Time OSs with DORITOS, SIGCSE Bul-
letin, Vol. 31, Mar 1999, No. 1, pp. 68-72.

8.	 Wear, L., Vayda, T. P., MacKenzie, K. and
Yakulis, R., An Operating System Model,
In Proceedings of the 14th conference on
Winter Simulation Vol. 1, San Diego, Cali-
fornia, 1982, pp. 323-327.

9.	 Batra, P. (2000). Parametric optimization
of critical Operating System processes.
Bridgeport, CT: University of Bridgeport,
Department of Computer Science and En-
gineering.

10.	Su, N. (1998). Simulations of an Operat-
ing System and Major Affecting Factors.
Bridgeport, CT: University of Bridgeport,
Department of Computer Science and En-
gineering.

11.	Zhao, W. (1998). Non-Platform Based Op-
erating System Optimization. Bridgeport,
CT: University of Bridgeport, Department
of Computer Science and Engineering.

12.	Folk, M. J., Zoellick, B., Riccardi, G. (1998).
File Structures: An Object-Oriented Ap-
proach with C++. USA: Addison Wesley
Inc.

TAREK M. SOBH received the B.Sc. in Engineering
degree with honors in Computer Science and Automatic
Control from the Faculty of Engineering, Alexandria University,
Egypt in 1988, and M.S. and Ph.D. degrees in Computer
and Information Science from the School of Engineering,
University of Pennsylvania in 1989 and 1991, respectively. He
is currently the Dean of the School of Engineering and Vice
Provost for Graduate Studies and Research at the University
of Bridgeport, Connecticut; the Founding Director of the
Interdisciplinary Robotics, Intelligent Sensing, and Control
(RISC) laboratory; and a Professor of Computer Science and
Computer Engineering.

ABHILASHA TIBREWAL received her B.Sc. and M.Sc.
in Home Science with honors in Textile and Clothing from
Lady Irwin College, Delhi University, India in 1993 and 1995,
respectively, and M.S. in Education and M.S. in Computer Sci-
ence from University of Bridgeport, CT, USA, in 2000 and 2001
respectively. She is currently employed as Lecturer of Com-
puter Science and Engineering at University of Bridgeport.
She is member of ACM, ASEE and the honor societies of Phi
Kappa Phi and Upsilon Pi Epsilon.

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 75

7. Appendices

APPENDIX A

NOTE: Simulation time of 7 has been chosen to show the functioning of aging parameters especially as also other parameters. A
simulation time of 7 means that the CPU works for those 7ms and the number of context switches are kept track of separately. This is
used when CPU utilization and throughput are calculated where these performance parameters are calculated not on simulation time
but simulation time plus total context switches.

INITIALIZING SCHEDULER
Please enter the following:
Total simulation time: 7
Maximum allowable processes: 5
Maximum allowable process execution time: 3
Maximum allowable process priority: 5
SETTING AGING PARAMETERS
Please enter aging parameters for each Q type:
SJFQ: 1
PriorityQ: 2
FifoQ: 2
SETTING PREEMPTION FLAGS
Please set the preemption flags for each Q type:
SJFQ (1/0):0
PriorityQ(1/0):0
SETTING ALPHA PARAMETERS
Enter alpha values for the following:
SJFQ:1
PriorityQ:1
FifoQ:1
SETTING INITIAL TIME ESTIMATES
Enter execution time estimates for the following:
SJFQ:2
PriorityQ:3
FifoQ:5
SETTING QUANTUM TIME FOR ROUNDROBINQ:
Enter quantum time slot for rrq:1
SETTING CONTEXT SWITCH:
Enter context switch: 1
SETTING MODE:
Step through Each Process or just Output [1/0]:1

SCHEDULING STARTED
Scheduling Started

Total Process Created = 5

Process Number = 1
Queue Number = 2
Execution Time = 1
Priority = 3
Arrival Time = 1

Process Number = 2
Queue Number = 4
Execution Time = 3
Priority = 1
Arrival Time = 1

Process Number = 3
Queue Number = 3
Execution Time = 3
Priority = 4
Arrival Time = 1

Process Number = 4
Queue Number = 2
Execution Time = 1
Priority = 3
Arrival Time = 1

Process Number = 5
Queue Number = 1
Execution Time = 3
Priority = 5

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 76

Queue Number = 4
Execution Time = 2
Priority = 4
Arrival Time = 3

FifoQ Content : 5 7 9
PriorityQ Content : 1 4
SJFQ Content :
RRQ Content : 6 8 2 3 10
DoneQ Content :
Process# 6 is executing.

Total Process Created = 4
Process Number = 11
Queue Number = 2
Execution Time = 2
Priority = 2
Arrival Time = 4

Process Number = 12
Queue Number = 4
Execution Time = 1
Priority = 1
Arrival Time = 4

Process Number = 13
Queue Number = 2
Execution Time = 1
Priority = 2
Arrival Time = 4

Process Number = 14
Queue Number = 1
Execution Time = 1
Priority = 4
Arrival Time = 4

FifoQ Content : 7 9 14
PriorityQ Content : 5 11 13
SJFQ Content : 1 4
RRQ Content : 8 2 3 10 6 12
DoneQ Content :
Process# 8 is executing.

Arrival Time = 1

FifoQ Content : 5
PriorityQ Content : 1 4
SJFQ Content : 3
RRQ Content : 2
DoneQ Content :
Process# 2 is executing.

Total Process Created = 3
Process Number = 6
Queue Number = 4
Execution Time = 3
Priority = 1
Arrival Time = 2

Process Number = 7
Queue Number = 1
Execution Time = 3
Priority = 4
Arrival Time = 2

Process Number = 8
Queue Number = 4
Execution Time = 1
Priority = 1
Arrival Time = 2

FifoQ Content : 5 7
PriorityQ Content : 1 4
SJFQ Content : 3
RRQ Content : 2 6 8
DoneQ Content :
Process# 2 is executing.

Total Process Created = 2
Process Number = 9
Queue Number = 1
Execution Time = 2
Priority = 3
Arrival Time = 3

Process Number = 10

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 77

FifoQ Content : 14 19
PriorityQ Content : 5 11 13 7 15 9 16 17
SJFQ Content : 1 4
RRQ Content : 3 10 6 12 18
DoneQ Content : 8 2
Process# 3 is executing.

Total Process Created = 0
FifoQ Content : 19
PriorityQ Content : 5 11 13 7 15 9 16 17 14
SJFQ Content : 1 4
RRQ Content : 10 6 12 18 3
DoneQ Content : 8 2
Process# 10 is executing.

SCHEDULING FINISHED
Total Processes Created in the system: 19
Total Processes Finished Execution in system:
2
Total Context Switches: 5
Maximum TurnAround Time in the system: 5
Maximum Waiting Time in the system: 2
TotalWaitingTime:4
Average Waiting Time in the system: 2
TotalTurnaroundTime:8
Average TurnAround Time in the system: 4
CPU Throughput for this sample run: 0.1667
CPU Utilization for this sample run: 58.33%

Number of Processes Executed from Round
Robin Queue: 2
Number of Processes Executed from Shortest
Job Queue: 0
Number of Processes Executed from Priority
Queue: 0

Total Process Created = 1
Process Number = 15
Queue Number = 2
Execution Time = 2
Priority = 2
Arrival Time = 5

FifoQ Content : 9 14
PriorityQ Content : 5 11 13 7 15
SJFQ Content : 1 4
RRQ Content : 2 3 10 6 12
DoneQ Content : 8
Process# 2 is executing.

Total Process Created = 4
Process Number = 16
Queue Number = 2
Execution Time = 2
Priority = 1
Arrival Time = 6

Process Number = 17
Queue Number = 2
Execution Time = 1
Priority = 4
Arrival Time = 6

Process Number = 18
Queue Number = 4
Execution Time = 1
Priority = 4
Arrival Time = 6

Process Number = 19
Queue Number = 1
Execution Time = 3
Priority = 2
Arrival Time = 6

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 78

 APPENDIX B

Walk through a sample run of memory manager module simulation

1.	 Setting variable parameters

2.	 Initial Hard Disc Configuration

3.	 Initial RAM Configuration

Journal of STEM Education Volume 7 • Issue 3 & 4 July-December 2006 79

4.	 In the midst of execution. The first column shows simulated time instance, the second one shows the action in the CPU at that instance and
the third one shows the action in the Memory at that instance. In addition the total hole size is output at each instance.

5.	 Compaction Scenario The first set shows the processes in the RAM prior to compaction and the second one shows the processes in 	
	 the RAM after compaction. The format is: Process number (starting address) (end address).

Note that after compaction the first process has a starting address of one and each subsequent process has a starting address consecutive to
the previous process’s end address. In other words, all the holes are compacted to a large one at the end of the RAM.

6.	 Final Performance Measures For The Run

