
Journal of STEM Education Volume 13 • Issue 4 July-September 2012 43

Enhancing the Programming Experience for
First-Year Engineering Students through Hands-On
Integrated Computer Experiences
Stephen Canfield, Sheikh Ghafoor and Mohamed Abdelrahman
Tennessee Technological University

Abstract
	 This paper describes the re-
design and implementation of
the course, “Introduction to Pro-
gramming for Engineers” using
microcontroller (MCU) hardware
as the programming target. The
objective of this effort is to im-
prove the programming compe-
tency for engineering students
by more closely relating the ini-
tial programming experience to
the students’ notion of engineer-
ing through the introduction of
significant hands-on experienc-
es. Through this experience,
the project also seeks to im-
prove students’ satisfaction and
success in subsequent courses
with programming content. The
course is organized around the
traditional programming course
topics, with all programming
exercises performed on MCU
hardware. Details of course
implementation are provided,
along with an assessment of
data collected over four semes-
ters. The primary outcomes
demonstrate that the MCU can
serve as an effective program-
ming platform for incoming stu-
dents, that hands-on experienc-
es are important motivators in a
programming course, and that
students readily relate computer
control as a primary function of
engineers.

1. Introduction
	 Many students enter engineering programs
as a result of hands-on experiences that they
have had in the past. However, engineering
programs often do not provide enough practi-
cal experiences early in the curriculum (Shall-
cross, 2006). The freshman-level programming
course provides an opportunity to build on in-
coming students’ perceptions of engineering
and the tools engineers use. The traditional en-
try-level programming course for engineers is
based on learning C, Fortran, or Matlab to solve
numerical algorithms associated with common
engineering models. Any use of a computer as
a device to control physical events is generally
contained in upper-level courses. While creat-
ing programs to solve numerical analysis prob-
lems is an important tool for engineers, we con-
tend that the current model is inverted based
on a pedagogical basis. Ideally, students would
begin learning programming in an environment
that matches their notions of engineering (that
engineers design systems that control the world
around them) and then later move to solving
advanced models that describe how the world
works. Based on recent advances in micro-
controller hardware, associated programming
environments and many examples of integrat-
ing programming with hardware in the loop for
upper classman engineering, the authors pro-
pose to alter the context in which programming
is taught to engineering students at Tennessee
Technological University (TTU). The course
has been implemented as an initial program-
ming experience based on a hardware-in-the-
loop model, retaining the traditional C program-
ming standard, but using a micro-controller (a
computer designed to interface with the outside
world) as a programming target to interface to
simple physical systems. This is intended to
result in a programming experience that will
demonstrate one way in which engineers use
computers and be appropriate for early under-
standing of engineering.
	 The remainder of this paper will proceed as

follows. Section 1.2 will discuss some examples
of related work, while section 2 will provide an
overview of the model. Section 3 will describe
the organization of the course and the program-
ming activities that introduce fundamental pro-
gramming skills through the microcontroller unit
(MCU). Section 4 will evaluate the project in
meeting the proposed objectives, and will pro-
vide a summary of observations from the first
implementation of this course. The paper will
end with concluding remarks in section 5.

1.2 Discussion of related literature:
	 Applying pedagogically-based improve-
ments to the engineering programming expe-
rience throughout the undergraduate program
has seen significant attention in the literature.
The majority of formal instruction in program-
ming for engineering students is commonly
found in the freshman year, and is a commonly
the focus for research in improved instruction
techniques (Bean & Dempsey,2007; Clough,
Chapra, & Huvard, 2001; Adamchik & Gu-
nawardena, 2005; Calloni & Bagert, 1995).
	 Many of the developments in introductory
programming instruction have focused on a
shift in roles of students to active learners,
most commonly through problem-based learn-
ing (Annetta, Cook, & Schultz, 2007; O’Kelly
& Gibson, 2006; Jay et al., 2000; Ambrosio &
Costa, 2010). Some of the approaches used
to construct meaningful context from problems
include teaming and role-playing by students,
programming within the context of gaming, soft-
ware simulation , system synthesis and design ,
PC tablet hardware and mechanical hardware,
such as lego mindstorm robots or lab experi-
ments (O’Kelly & Gibson, 2006; Kuittinen &
Sajaniemi, 2004; Annetta, Cook, & Schultz,
2007; Scott, 2003; Colombo, Hernandez, &
Gatica, 2000; Ambrosio & Costa, 2010; Ewert,
Schilberg, & Jeschke, 2011; Furman & Wertz,
2010).	
	 When looking at changes in the program-
ming environment, the most common theme is
in the selection and use of software computing

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 44

tools including non-traditional programming en-
vironments such as spreadsheets symbolic ma-
nipulation software (Herniter, Scott, & Pangasa,
2001; Bean & Dempsey, 2007; Clough, Chapra,
& Huvard, 2001; Colombo, Hernandez, & Gati-
ca, 2000; Cheng, 2009; Schulte & Bernnedsen,
2006). These are often promoted as an alterna-
tive to high-level programming languages (C or
Fortran).
	 To a lesser degree, the programming envi-
ronment has been modified through changes
in hardware. The most common examples of
hardware applications for programming educa-
tion have been through the use of robots, in
which the Lego Mindstorms present a platform
used in engineering and computer science in-
troductory courses. (Flowers & Gossett, 2002;
Maher, Becker, & Sharpe, 2005) Other hard-
ware examples are in mechatronic applications
or lab-type settings (Reuler et al., 2003; Furman
& Wertz, 2010).
	 In some cases, the programming experi-
ence has been incorporated into a broader first
year design sequence. For example, fresh-
men at OSU participate in a three-semester
sequence in which the students design, imple-
ment and test mechatronics systems (systems
that combine sensors, actuators and computer
control) (Reuler et al., 2003).
	 Despite the efforts of some engineering
programs to develop novel and innovative
methods to introduce engineering students to
programming, the overwhelming majority of
programs retain a model that introduces high-
level programming languages to freshmen or
sophomore students with little physical applica-
tion. This paper will contribute by providing an
example of an initial programming experience
based on a commercial microcontroller, with an
evaluation of the student outcomes and issues
of implementation.

2. Overview of the proposed model:
	 The proposed model for improving the pro-
gramming experience is designed around two
principles of learning that are highlighted in
How People Learn , and emphasized within a
context related to STEM education (Bransford,
Brown, & Cocking, 2000; Committee, 2005).
These principles are presented within the
framework of the proposed activity as follows:

1.	Students enter the engineering curriculum
in general, and the early programming
course in particular, with pre-conceptions
about how engineering and computers
work. In order to effectively develop them

as successful engineers, their initial under-
standing must be engaged and developed
to see the full picture of computers in engi-
neering, which goes beyond the traditional
desktop picture.

2.	To develop competence in the use of com-
puters in engineering applications, student
must build an appropriate structure or
framework to represent knowledge that
guides understanding and is reinforced
through application.

	 The first principle is met through the rede-
sign of the introductory programming experi-
ence with a focus on hardware-in-the loop pro-
grams. These early programming activities will
engage students in simple, hands-on engineer-
ing applications. These applications are select-
ed to match the students’ early notions of engi-
neering: that is engineering involves interaction
and control of the environment. The second
principle, developing an appropriate framework
on which to build knowledge in programming,
is first addressed with an emphasis on trans-
parency of program operation and control. The
MCU (microcontroller unit) represents a simple
computer model where reading or writing to dig-
ital input or output registers is a basic program-
ming function. This structure is then built upon
through a process of sequential addition of pro-
gramming constructs to advance programming
capabilities. To illustrate this point, consider a
simple input/output control on an MCU in which
the students create a simple program to look
for an input switch press and then turn on an
led, buzzer or simple DC motor. This program-
ming experience allows students to relate many
fundamental concepts in programming, such as
variable definition, discrete nature of variables,
memory type, and memory control in an imme-
diate fashion to the components of a program.
The activity can then advance to involve selec-
tion from several switches, or other input sen-
sor, to determine one of multiple output states.
Furthermore, the early programming experi-
ences can scaffold on students’ early expecta-
tions for physical cause-and-effect to provide
intuition of how many common programming
constructs should work. The proposed model
will be evaluated on three criteria for successful
implementation: a) degree to which the model
improves early engagement of students with
programming, b) degree to which the model
builds on existing knowledge framework, and c)
degree to which the model improves students’
performance based on current in-course as-
sessment measures (measures used to provide
student grades).

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 45

3. Course Description
	 The proposed model is targeted for the “In-
troduction to Programming” course offered to
all incoming freshman enrolled in engineering
at Tennessee Tech. This course is delivered in
a standard weekly lecture and lab format. The
model was implemented in one out of approxi-
mately four available course sections in 2008,
2009 and 2011. The section for model imple-
mentation is called the model or target group,
while one or more of the remaining sections are
identified as a comparison group. This model
section retained the programming standard,
syllabus, and textbook currently used in this
course, but changed the programming target
from a desktop PC to a microcontroller (MCU)
unit for the lab portion of the course. The
MCU allowed the programming assignments
to involve hardware in the loop. Transparency
in the programming applications is achieved
through programming the MCU in C, that gave
direct control of memory and I/O registers. A
commercial integrated development environ-
ment (IDE) serves as the program editor, com-
piler, and emulator, and readily interfaces with
the MCU.

4. Details of the course

4.1 Course Content:
	 The course content was based on the pre-
existing syllabi, with the primary topics present-
ed in Table I.

4.2 Course Hardware:
	 A primary distinguishing feature of this work
is to implement a microcontroller, rather than
traditional PC, as the initial programming tar-
get. Further, the authors contend that the MCU
selected should be appropriate for engineering

practice, and at the same time be readily ac-
cessible for prototype work. One such product
is the Dragon12 plus board, which is based on
the Motorola HCS12 processor family and was
used in this project (Dragon12Plus, 2011). This
MCU is widely used in engineered products, and
the Dragon12 evaluation board, shown in fig. 1
below, has numerous input / output functions
integrated directly with the MCU. Table II pro-
vides a summary of the primary features of the
Dragon12. It should be noted that this particular
selection of microcontroller and corresponding
evaluation board is not a unique selection for
this model, but is rather representative.

4.3 Course Programming Environment:
	 The Freescale Codewarrior cross compiler,
which comes with an Integrated Development
Environment (IDE) (2011), was used in this
project. This IDE serves as an ANSI C/C++
compiler, and allows students to compile a pro-
gram on their desktop, as well as connect and

Topic # Topic

1 Introduction to programming, program design, process

2 Data types, variable, arithmetic expression

3 Input / Output

4 Std libraries, math libraries, math operations, text operations

5 Selections: if, if-else, if-else if

6 Repetition: while, for

7 User defined functions

8 Arrays

 Table I: Course Topics

Figure 1: Dragon 12 Plus

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 46

Programming Construct Description hands-on activity

1 Introduction to programming
environment, creating,
compiling, building, executing

Create a simple
teleprompter

display characters on a 2-line 16
char. LCD screen

2 Data types, input, output Display a running pattern
of lights on LEDs

read from switches and display a
pattern on the LEDs

3 Standard library functions, math
operations

Calculate the value of
gravity using a simple
pendulum

 measure the period of a
pendulum using a simple analog
input and a given timer function,
calculate a value of gravity for a
linear pendulum model.

4 Selection: if, else, if-else if Create a simple Electronic
Recipe book containing
two or more recipes

 display a series of screens or
menus on the lcd where the
menus and order are selected by
pushbutton switches

5 Repetition: while, for Create a simple security
system

scan a series of digital and
analog inputs, look for a
particular state of these inputs
and then drive a buzzer and
motor based on the inputs.

7 one-dimensional arrays Create a system that
requires a security code
before operating a
motor/light

Read switch inputs and compare
to a lock-code sequence, when
correct, operate a motor/light

8 Multi-dimensional arrays Create an electronic
address book that lets a
user input and store a name
using the push button
switches, LCD and an
array.

Use switch inputs to enter data
into the system, recall and
display this data on the LCD

9 User defined functions Create a system that
demonstrates basic
elements of a servo motor
system

Drive motors at different speeds
using a pwm function based on
analog input

Product Capability

Processor: MC9S12 16bit CPU, 24Mhz
256K Flash EEPROM, 12K RAM
Serial communication, 10-bit ATD, timer channels, PWM, discrete I/O,
interrupt I/O

Dragon12
Evaluation Board,
www.wytec.com

Output Devices:
2x16 digit LCD,
single-row LEDs, 4 – 7 segment LEDS,
Piezo speaker
Motor driver (H-bridge)
Input Devices:
8 dip switches, 4 momentary switches, 16-key keypad, IR proximity
sensor, Photoresister, Analog to Digital input channels.

 Table II Summary of MHCS12/Dragon12 features

Table III Summary of Lab exercises by Programming Construct

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 47

download the executable to the target MCU in
a single step. Furthermore, this IDE allows the
students to run the program on the MCU target in
an interactive fashion. This IDE is available from
Freescale for free with a 32k program limit, which
was sufficient for early programming practice.

4.4 Course Assignments
	 Homework assignments consisting of se-
lected problems from the course textbook and
weekly lab assignments (over a 14 week se-
mester) based on the MCU were given to the
students. Table III gives examples of the lab
assignments and links them to the desired pro-
gramming constructs. Each lab activity was as-
signed with a problem statement and a required
set of deliverables tied to the program perfor-
mance. The assignment provided some addi-
tional support through simple examples of use-
ful functions, or a brief discussion of any physi-
cal interface issues involved. To fully complete
each assignment, the student was required to
implement their programmed device in a setting
outside of the classroom or lab, and provide a
short, written assessment of their observations
of this experience.

4.5 Example programming assignments
	 Two example programming assignments
are provided below. The first makes use of in-
put / output and double selection (if-else). The
second emphasizes the use of selection, rep-
etition and, if desired, one dimensional arrays.
These assignments are carried out in the lab
period that is associated with the class.

Assignment Eggmaker 2000:

Description: Create a program to run on your
Dragon12 board that will guide a person to cre-
ate the perfect hard-boiled or soft-boiled egg.
For the purposes of this exercise, we will as-
sume that the perfect hard-boiled egg requires
12 minutes in boiling water and a soft-boiled
egg requires 6 minutes in boiling water. Each
egg must be rinsed under cold water for 10 sec-
onds after it has boiled for the necessary time.
The program should allow a use to choose be-
tween a hard or soft boiled egg, provide a dis-
play of each step in the recipe, and provide a
display of the time remaining for all time events.

Programming Constructs covered by the lab
Input/ output
Simple selection (if-else)

Hardware component used
	 Push button switches
	 LCD display
	 LEDs

Turn in:
•	program outline/psuedocode/flowchart
•	printout of code
•	demo to lab assistant and get printout
	 initialized
•	description of response received
	 (1 paragraph or less, handwritten or typed)

Assignment Dragon12 Security System:

Description: In this lab you will create a secu-
rity system similar to a home security system.
You will use the light sensor on the dragon
board to simulate break in. Your program
should ask the user to enter a 4 digit pass code
to arm the security system. The user will use
the push button switch on the board to enter the
pass code. Once the user enters the pass code,
your program should store the pass code (use
4 variable to store the 4 switch) and allow 3 to 5
second to put the dragon board in a drawer or
cover the light sensor (simulating the closing of
doors). After that, your program should continu-
ously monitor the light sensor. If the drawer is
opened, or light sensor cover is removed, then
(simulation of break in) your program should
turn on the buzzer (simulate the alarm) and ask
the user to enter the pass code. If user enters
the pass code correctly your program should
turn off the buzzer. If the user enters an incor-
rect pass code, it should display an appropriate
message asking for the pass code again. The
user should be allowed three chances to enter
the correct pass code. If the user fails to enter
the correct pass code, the buzzer should not be
turned off.

Programming Constructs covered by the lab
Input/ output
Nested double selection (nested if-else)
Loop (while and for)

Hardware component used
	 Light sensor
	 Push button switches
	 Speaker
	 LCD display

Turn in:
1)	 program outline/psuedocode/flowchart
2)	 printout of code
3)	 demo to lab assistant and get printout ini-

tialized
4)	 description of response received (1 para-

graph or less, handwritten or typed)

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 48

5. Project Assessment
	 and Evaluation
	 This section will present an assessment
of the programming model and discuss these
results. The section will first present a meth-
odology for project assessment that shows the
assessment tools and how they were adminis-
tered. A summary of the results from the as-
sessment tools are provided next, followed by a
discussion of the results and what they can infer
relative to the project objectives.

5.1 Methodology
	 The hardware based model was implement-
ed over multiple semesters at TTU. There are
multiple sections of introductory programming
courses in each semester. Each semester,
one of the sections was selected for interven-
tion, which we call the target or model group.
At least one other section was selected as a
base line for comparison, which we call a com-
parison group. The students signed up for the
sections in the normal fashion and the sections
were identified as model or comparison groups
at random. The majority of students in the in-
troductory programming course are freshman
engineering students. It should be noted that if
special sections of the course were offered (for
example honors or special times), then these
sections were not used as either model or com-
parison groups.
	 Several assessment tools were developed
to measure the impact of our model on stu-
dents’ learning and attitude towards program-
ming. Table IV provides a summary of these
assessment tools, when they were adminis-
tered, and the number of students representing
the model and comparison groups. The tools
were developed by external evaluators who
were not involved in development and imple-
mentation of the model. A brief description of
each assessment tool is given here.

Pre/Post Survey: A pre and post survey instru-
ment was constructed to survey the students’
opinions on various items related to program-
ming, engineering and learning. The primary
objective of this tool is to measure 1) student’s
interest in programming activities, and 2) at-
titude toward programming as a tool for engi-
neers. The survey was administered to both the
model and comparison groups. The pre-survey
was given on the first day of class while the post
survey was given at the end of class, in an effort
to measure the change in student’s attitude and
interest towards programming. The survey was
developed based on several existing validated
surveys by an external evaluator (Weigel, 2011;
Thomassian, Desai, & Kinnicut, 2008; Nocito-
Gobel, Collura, Daniels, & Orabi, 2005; Bester-
field-Sacre, Attman, & Schuman, 1998). Table
V in the results section below summarizes the
questions from the survey.

Focus Group: The focus group evaluations were
performed to gather supporting information with
respect to the project outcomes from the model
and comparison populations. They were car-
ried out on small groups of approximately six
students, and were guided through a facilitated
discussion on the nature of the coursework
and the perceived impact on engagement and
learning. Focus groups were formed for both
the model and comparison groups during the
semesters shown in Table IV. The focus group
sessions were held at the end the semester of
each implementation, and were conducted by
an external evaluator (not related to the course)
and a note taker. The list below provides an ex-
ample of the types of questions used to initiate
and direct the focus group discussions.
•	Was the hardware (HW) engaging?
•	 If so, why, what?
•	Do you feel like your labs are practical en-

gineering assignments?

Assessment Tool Fall 08 Spring 09 Spring 11 Fall 11

Pre/Post Survey X X X X

Focus Group X X X X

Topic Examination Assessment X

of Students: Model Group 20 30 20 26

of Students: Comparison
Group

70 40 70 22

 Table IV Summary of Assessment Tools and Administration

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 49

1 I am sure that I can learn programming

2 Generally I feel secure about attempting programming problems

3 If I could avoid programming to get an engineering degree, I would

4 I have a lot of self-confidence when it comes to programming

5 I will use programming in many ways throughout my life

 6 I am sure that I can help others use programming to solve problems

7 To be interesting to me programming needs to be connected to real world problems or applications

8 I am excited to learn programming skills that will allow me to control real world devices

9
I see myself joining a professional society related to computer programming or applications (for example
ACM, Association for computer machinery) in the future

10
I am interested in joining a club that makes use of programming (for example the robotics club, Unix user
group) in the future

11 I would write a program outside of the required class work

12 I would write a program to solve an assignment in another class, even if it was not required.

•	What assignments were most engaging?
•	What assignments were most confusing?
•	What were the positive aspects of the

hands-on hardware?
•	What were the negative aspects of using

the hardware?

Topic Examination Assessment: The goal of this
assessment is to measure the achievement of
the course objective (acquiring programming
skill). This was done through quizzes, program-
ming assignments, and tests, and also served
as the basis for the course grades. These were
developed by the instructor of the course. Both
the model group and the comparison group
were given the same quizzes, tests and pro-

gramming assignment, and were graded in a
uniform fashion.

5.2 Results

Results from Pre/post Surveys
	 The pre/post survey instrument was ad-
ministered to both the model and comparison
groups over several implementations of the
project, as indicated in Table IV, with a com-
bined total of approximately 300 (about 100 in
the model group and 200 in the comparison
group) student responses recorded. Results
from a selection of the pre/post survey ques-
tions are summarized and presented in Figure
2 and Table V below. The response to each

 Figure 2: Average response for Pre/Post Survey Data

Table V: Summary of Pre/Post Survey Questions presented in Fig. 2

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 50

question was recorded on a five point Likert
scale where 5 = strongly agree, 4 = agree, 3 =
neutral, 2 = disagree and 1 = strongly disagree.
Figure 3 presents the average responses for
these questions as a bar chart, where the first
bar in the series represents the pre-survey
response as a composite of the model and
comparison groups, and the second and third
bars represent the post-survey response for the
model and comparison groups respectively.

Results from Focus Groups:
	 Unlike the pre/post survey results, the focus
group data is qualitative in nature. A summary
of the focus-group feedback for the model and
comparison groups is provided first, followed by
a sample of responses from selected questions
in the focus group surveys in Table VI.
	 For focus groups from both the comparison
and model populations, it was gathered that the
students consider the programming class and
instructors in an overall positive light. Students
from the comparison courses tend to see the
programming experience as being more target-
ed toward math, with computer science appli-
cations, while students from the model courses
report the experience as a real-world applica-
tion, with what they expect to be engineering

applications. All groups prefer programming
applications that are more engineering related.
Students from the comparison courses cite pro-
gramming constructs or tedious applications as
the biggest complaint, while students from the
model courses cite a few difficulties with hard-
ware as the biggest complaint. Students from
the comparison courses indicate an interest
in more hands-on applications, while students
from the model courses, even acknowledg-
ing the hardware difficulties, indicate that they
would take the model course again.

Results from Topic examination Assessment:
	 Figure 5 shows the results of the topic exami-
nation assessment. Four types of assessments
were conducted: quizzes (10/15 minutes), small
programming assignments (less than 20 line
code), large programming assignments (more
than 100 line codes involving multiple function
and source file), and tests (hour long). Nine
quizzes, six small programming assignments,
three large programming assignments, and four
tests were given to the students. The results
of these are shown on Figure 3 as a bar chart,
where the first bar represents the comparison
group and the second represents the model

Question What were the positive features of using the MCU hardware for the class

Responses “Loved using the Dragon Boards”

“More realistic real-world assignments”

“cool compared to what the other classes are doing”

“make something do what you want (move) rather than just looking on the screen”

Question What were the negative features of using the MCU hardware for the class

Responses “Some time is required to get up to speed in using the MCU hardware”

“Unsure if the errors exist in the hardware or my program”

Question Do you feel comfortable with other more traditional applications (PC based)

Responses “Yes, have been helping friends from other classes without any issues”

“Yes, at least one of the lectures should be an introduction to how it programming is applied
to different computing platforms”

Question Now that you have taken the class, how likely would you be to take this model again

Responses Would take the class again (+90%)

 Table VI: Selected responses from Focus Groups

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 51

group. The first five columns show the average
class score for the quizzes, small programming
assignment, large programming assignment,
test, and an average of these all scored out of
100. The next five columns in Figure 3 show
the percentage of students that received grade
A, B, C, D and F. The last two columns show
the average ACT score and percentage of stu-
dents that claim to have some sort of program-
ming experience prior to starting the course.

5.3 Discussion of the results:

	 The results are now considered relative to
their impact on the overall model goals: engag-
ing students and building on students’ frame-
work of knowledge for understanding program-
ming in engineering. These are grouped into
three observations and an overall conclusion.
First, students that participated in the model
program demonstrated higher levels of en-
gagement, confidence and attitude toward pro-
gramming relative to their comparison peers.
This was observed in response to several
of the survey questions (1-4, 6, 8) as well as
feedback from the focus groups. For example,
students identify programming as an important
skill in engineering when they enter the course
(pre-course survey, Question 3, 8). Students
in the model program increased in their belief
that programming is important in engineering
(post course survey, Question 3, 8 model group
response), while students in the control groups

tend to decrease in this belief (post course sur-
vey, Question 3, 8 comparison group response).
As another example, students entering the pro-
gramming class are neutral on their self-con-
fidence in programming. This self-confidence
increased slightly when completing the course
as the comparison group, and increased a sig-
nificant amount when completing the course
as the model group (pre/post survey, question
4). The focus group surveys further emphasize
these observations; students from the compari-
son groups tend to see the programming expe-
rience as being more targeted toward math with
computer science applications, while students
from the model groups report the experience as
real-world applications in what they expect to
be engineering applications. All groups prefer
programming applications that are more engi-
neering related.
	 The results also indicate that the students in
the model group tended to build on existing no-
tions of engineering and programming relative
to their comparison peers. This can be seen in
the responses to survey questions (5, 7, 9-12)
and feedback from the focus group interviews.
As an example, focus group data indicated
clearly that the students prefer programming
applications that are more engineering related
(regardless of group), and that the students’
notions of engineering applications tends to be
hands-on, while their view of computer science
applications tends to be number crunching.

Figure 3: Results of Topic Examination Assessment

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 52

Perhaps more telling, students from the com-
parison courses cite programming constructs or
tedious syntax as the biggest complaint, while
students from the model courses cite difficulties
with hardware as the biggest complaint. This
may suggest that for students in the model
group, the hands-on applications provided a
framework on which to build an understanding
of the programming constructs, leading then to
details of the hardware (and not programming
constructs or syntax) as the leading difficulty.
Performance on the topic examination assess-
ment indicates that the model group students
demonstrated equal or better mastery of the
programming constructs and syntax as mea-
sured by homework, quizzes, and exams.
	 As a second observation, it is noted in some
cases that the post survey responses of the stu-
dents show what appears to be a decrease in
progress toward improved attitude and engage-
ment. It is considered by the authors that this
is somewhat attributable to incorrect perception
of the entering students about the nature of
programming and engineering, and some of the
challenges associated with early steps in learn-
ing. In either case, it is noted that the decrease
in these areas is consistently less for the model
group than it is for the comparison group.
	 As a final observation, the increased en-
gagement and building on existing notions of
programming in engineering appears to go
hand-in-hand with improved performance in
programming when measured using typical
topic examination instruments. For example, it
can be seen that the model groups on average
performed better that the comparison groups,
and a result that would not be predicted when
comparing their incoming ACT scores or prior
experience with programming.

6. Conclusions
	 This paper has presented a model for the
restructuring of the traditional “Introduction to
Programming” course for engineering students,
with an emphasis on hands-on application
of programming assignments. The underly-
ing pedagogical foundations of this activity
are to engage incoming students’ notions of
engineering and to build on this early knowl-
edge in a progressive fashion, with real-world
programming applications that are relevant to
engineering and appropriately selected for the
target group. The course and assignments are
designed around the objectives of building on
existing students’ knowledge, enhancing knowl-
edge transfer, and enabling students to take

more control of their learning process.
	 The re-designed programming course was
implemented several times at TTU leading up
through the fall semester of 2011. Initial as-
sessments of the project provide strong indica-
tion that several of the project objectives were
met. Students that engaged in the hands-on,
hardware-based programming activities re-
ported a more positive early experience with
programming and its relation to the engineering
curriculum relative to their comparison-group
peers. The students participating in the proj-
ect also reported improved confidence in their
ability to learn and use programming, and note
its importance in their engineering studies. Fur-
thermore, these students indicated that this ex-
perience contributed positively to their decision
to continue in engineering. These benefits are
attributed to the project successfully engaging
the students’ notions of engineering and mak-
ing successful early steps to build a conceptual
framework on this underlying understanding.
	 In conclusion, we contend that the results
imply that the hands-on programming model
provides increased engagement and builds
on incoming notions of programming in engi-
neering that result in better learning. The in-
creased engagement appears to be a result of
the hands-on activities, while the better learning
may in part stem from: a) increased engage-
ment, b) building on an existing framework of
knowledge, and c) seeing programming in mul-
tiple contexts (both hands on and desktop).

Acknowledgement
	 This material is based upon work support-
ed by the National Science Foundation under
Grant No. 1022934. Any opinions, findings, and
conclusions or recommendations expressed in
this material are those of the author(s) and do
not necessarily reflect the views of the National
Science Foundation.

References
Adamchik, V., & Gunawardena, A. (2005). Adap-

tive book: Teaching and learning environ-
ment for programming education. Proceed-
ings ITCC 2005—International Conference
on Information Technology: Coding and Com-
puting, 	 April 4-6, Las Vegas , NV, 488-492.

Ambrosio, A.P.L., & Costa, F.M. (2010). Evalu-
ating the impact of PBL and tablet 	PC’s in
an algorithms and computer programming
course. Proceedings of 	 SIGCSE 2010,
March 10-13, Milwaukee, WI.

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 53

Annetta, L.A., Cook, M., & Schultz, M. (2007).
Video games: A vehicle for problem-based
learning. E-Journal of Instructional Sci-
ence and Technology, 10(1).

Bean, J.E., & Dempsey, J.P. (2007). Collabora-
tion between engineering departments at
Clarkson university for a freshman-level
engineering programming course includ-
ing an experimental labe experience. Pro-
ceedings of the 2007 CIEC Conference,
February 3-10.

Besterfield-Sacre, M.E., Atman, C.J., &
Schuman, L.J. (1998). Engineering stu-
dent attitudes assessment. Journal of En-
gineering Education, 87(2), 133-141.

Bransford, J.D., Brtown, A., & Cocking, R. (2000).
How people learn: Mind, brain, experience
and school-Expanded edition. Washington
D.C.:National Academy Press.

Calloni, B.A., & Bagert, D.J. (1995). Iconic pro-
gramming for teaching the first year pro-
gramming sequence. Proceedings-Fron-
tiers in Education Conference, November
1-4, Atlanta, GA. 99-102.

Cheng, H. (2009). C for the course. Mechanical
Engineering, 131(9), 50-52.

Clough, D.E., Chapra, S.C., & Huvard, G.S.
(2001). A change in approach to engineer-
ing computing for freshmen-Similar direc-
tions at three dissimilar institutions. 2001
ASEE 	 Annual Conference and Exposi-
tion, June 18-21, St. Louis, MO. 773-784.

Colombo, M.A., Hernandez, M.R., & Gatica,
J.E. (2000). Combining high-level pro-
gramming 	 languages and spread-
sheets an alternative route for teaching
process synthesis and design. 	 2 0 0 0
ASEE Annual Conference and Exposition,
June 18-21, St. Louis, MO. 773-784.

Committee on How People Learn (2005). A
targeted report for teachers. In M.S. Dono-
van & J.D. Bransford (Eds.), How students
learn: History, mathematics, and science in
the classroom, Washington D.C.: The Na-
tional Academic Press.

Dragon12 Plus. Retrieved December 20, 2011,
from www.evbplus.com.

Ewert, D., Schilberg, D., & Jeschke, S. (2011).
Problem-based learning of object-oriented 	
programming with lego mindstorms NXT
and legos. INTED2011 Proceedings,
3011-	 3017.	

Flowers, T.R., & Gosset, K.A. (2002). Teaching
problem solving, computing and informa-
tion 	 technology with robotics. Jour-
nal of Compputing Sciences in Colleges,
17(6).

Freescale Codewarrior. Retrieved December
20, 2011, from www.freescale.com.

Furman, B., & Wertz, E. (2010). A first course
in computer programming for mechanical
engineers. Mechatronics and Embedded
Systems and Applications (MESA)-2010 	
IEEE/ASME, July 15-17.

Herniter, M.E., Scott, D.R., & Pangasa, R.
(2001). Teaching programming skills with
MATLAB. 2001 ASEE Annual Conference
and Exposition, June 24-27, Albuquerque,
NM.

Jay, J., Barg, M. Fekete, A., Greening, T., Hol-
lands, O., Kingston, J., & Crawford, K.
(2000). Problem-based learning for foun-
dation computer science courses. 	C o m -
puter Science Educations, 10(2), 109-128.

Kuittinen, M., & Sanjaniemi, J. (2004). Teaching
roles of variables in elementary program-
ming courses. Proceedings of the 9th An-
nual SIGCSE Conference on Innovation
and Technology in Comuter Science, June
28-30, Leeds, U.K., 57-	 61.

Maher, R.C., Becker, J., Shapre, T., Peterson,
J., & Towle, B.A. (2005). Development and
implementation of a robot-based fresh-
man engineering course. Proceedings of
the 2005 American Society for Enginering
Education Annual Conference and Expo-
sition, June 12-15, Portland, OR.

Nocito-Gobel, Collura, J.M., Daniels, S., &
Orabi, I. (2005). Are attitudes towards en-
gineering influenced by a project-based
introductory course?. Proceedings, 2005
American Society for Engineering Educa-
tion Annual Conference and Exposition,
June 12-15, Portland, OR.

http://www.evbplus.com
http://www.freescale.com

Journal of STEM Education Volume 13 • Issue 4 July-September 2012 54

O’Kelly, J., & Gibson, J.P. (2006). Robocode
and problem-based learning: A non-pre-
scriptive approach to teaching program-
ming. Proceedings of the ITiCSE 	 2 0 0 6 ,
June 26-28, University of Bologna, Italy.

Reuler, R.J., Hoffmann, M.J. Pavlic, T.P.,
Beams, J.M. Radigan, J.P, Dutta, P.K., et 	
al. (2003). Experiences with a comprehen-
sive freshman hands-on course designing,
building, and testing small autonomous
robots. ASEE Annual Conference and Ex-
position: Staying in Tune with Engineering
Education, 10263-10277.

Schulte, C., & Bernnedsen, J. (2006). What do
teachers teach in introductory program-
ming?. Proceedings of the Second Interna-
tional Workshop on Computing Education
Research, September 9-19, Canterbury,
U.K.

Scott, K. (2003). Teaching graphical interface
programming in java with the game of wari.
Proceedings for the 8th Annual SIGCSE
Conference on Innovation and Technology
in Computer Science Education, June 30-
July 2, Tessaloniki,

Shallcross, L. (2006). Piecing it all together.
ASEE Prism, 16(3). http://www.prism-
magazine.org/nov06/tt_01.cfm

Thomassian, J., Desai, A., & Kinnicut, P.
(2008). A study of student attitude towards
media-based instruction in introductory en-
gineering courses. Proceedings of the 38th
ASEE/IEEE Frontiers in Education Confer-
ence, October 22-25, Saratoga Springs,
NY.	

Weigel, A. (2011). Survey of Aerospace Stu-
dent Attitudes. Retrieved October 20,
2011, from http://web.mit.edu/caspar/aero-
survey.htm.

Dr. Stephen Canfield is a professor in the
Department of Mechanical Engineering at Tennessee
Technological University. He received his Ph.D.
in mechanical engineering at Virginia Tech in the
field of parallel architecture robotics. His research
interests include robot kinematics and dynamics,
topological optimization of compliant manipulators
and in-space mechanisms. His current research is in
robot modeling, control and development with a focus
on climbing mobile robots for autonomous welding
and NDE inspection in hazardous, unstructured
environments.

Sheikh Ghafoor is an Assistant Professor in the
Department of Computer Science at Tennessee
Technological University. He received his MS Ph.D. in
Computer Science from Mississippi State University.
His primary research includes Parallel, Distributed
Computing, and High Performance Computing. His
current research is in autonomic resource management
for high performance computing environment,
programming model for parallel adaptive applications,
and fault tolerant computing. Dr. Ghafoor is also very
interested, and actively engaged in research in the
area of computer science and engineering education.
Dr. Ghafoor has been principal investigators and
investigator on grants from NSF and DOE.

Dr. Abdelrahman is the Interim Associate Vice
President for Research and Graduate Studies and As-
sociate Dean in the Frank H. Dotterweich College of
Engineering at Texas A&M University-Kingsville. Dr.
Abdelrahman holds BS and MS degrees in Electri-
cal Engineering and Engineering Physics from Cairo
University. He also holds MS and Ph.D. degrees in
Measurement and Control and Nuclear Engineering
from Idaho State University. During his career, Dr.
Abdelrahman’s research focus has been on industrial
applications of sensing and control. He has been the
Principal and co-Principal Investigator of over $5 M
funding from Federal, State agencies and private In-
dustry.

http://www.prism-	magazine.org/nov06/tt_01.cfm
http://www.prism-	magazine.org/nov06/tt_01.cfm
http://web.mit.edu/caspar/aerosurvey.htm
http://web.mit.edu/caspar/aerosurvey.htm

