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Introduction
	 Through the traditional method of the learning 
process, students are first exposed to the content by the 
classroom teacher. In an engineering context, concepts 
are learned and students have the opportunity to gain an 
understanding of the theoretical background and purpose 
of the theories. During this process, the classroom teacher 
may show classic examples of where the theory may be 
applied. The students may have the opportunity to dem-
onstrate knowledge of the content through formative or 
summative assessments. In technology education class-
rooms, the students typically develop a project or artifact 
to demonstrate their understanding of the material to 
solve a problem presented by the teacher (Mentzer, 2011). 
As part of this process, students may have the opportu-
nity to use simulation modeling. Computer simulation 
modeling is an engineering tool used to solve problems. 
Computer Simulation was defined by de Jong and van 
Joolingen (1998) as “a program that contains a model of 
a system (natural or artificial) or a process”. Simulations 
allow users to examine resulting values of computations 
after establishing the parameters of the system (Smith 
& Pollard, 1986). The parameters can then be adjusted  
based on the results, and further computations can be 
analyzed. Simulation has traditionally been used as a tool 
or resource to apply the content knowledge learned. Once 
the theoretical knowledge is learned, simulation modeling 
is introduced as a tool to demonstrate the application of 
the learned theory. By using simulations, students can test 
a greater number of models and run multiple iterations of 
testing before committing to a final solution. This provides 
an efficient method of knowledge application because 
students can learn how the theory is used in multiple situ-
ations and can gain knowledge about the authentic ap-
plication of course content. Engineering concepts can be 
introduced to the students, and then simulation modeling 
can be integrated in order for students to apply the learned 
knowledge. 
	 Simulation modeling can be extremely beneficial in 
expanding student learning when used in combination 
with physical models to illustrate engineering and design 
concepts (Clark & Ernst, 2006; Ernst & Clark, 2009; Jaak-
kola, Nurmi, & Veermans, 2011; Newhagen, 1996; Smith 
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& Pollard, 1986; Zacharia, 2007). This can be especially 
useful in a project-based curriculum typically found in 
technology education. For example, bridge building and 
CO2 cars are two popular middle grade activities. However, 
both of these activities require consumable materials and 
substantial time to complete physical models. It would be 
extremely difficult for a classroom teacher to spend the 
time necessary for students to participate in the testing, 
evaluation, and redesign steps of the engineering design 
process using only physical models as the artifact. By in-
corporating simulation modeling into the lesson, students 
can create multiple virtual models, as wells as test and 
redesign them as necessary (Deal, 2002; Piccoli, Ahmad & 
Ives, 2001). These simulations allow the student to experi-
ence all the steps of the engineering design process and 
complete the learning loop for testing and redesign. Once 
a student has created a final optimized solution, a physical 
model can then be built tested.
	 There has been a significant amount of research on 
simulation modeling. In 2012, Rutten, van Joolingen, 
and van der Venn published research summarizing how 
computer simulation has been used in science education 
during the previous decade. Their results show that 
simulations play a significant role in the science education 
system at the post-secondary level, and results vary 
among their ability to increase achievement. Although 
there is much research about simulation modeling, 
there is little research on how simulation model is 
being incorporated at the secondary level. There is also 
little research demonstrating the effects of sequencing 
computer simulation with traditional content knowledge 
in order to increase the opportunity for student learning 
in a technology and engineering education classroom. The 
traditional method of teaching is to deliver the content 
knowledge of the lesson and then give the students an 
opportunity to demonstrate their understanding of the 
concepts through physical modeling. The teacher may or 
may not offer formative assessments during the lesson 
or may require a summative assessment between the 
content and physical model or at the end of the project. 
However, the current research project suggests the 
traditional sequence of content delivery with building 
the physical model may not offer the best sequence to 
increase student achievement and performance. Some 

research exits showing the sequence of incorporating 
the learning activities may have an impact on student 
learning (Clarke, Ayres, & Sweller, 2005). However, 
there is very little research on this topic in the context 
of technology education. The researchers have designed 
the methodology of this research project to determine if 
an alternative sequence of virtual modeling and content 
delivery has an effect on student achievement and 
performance within a technology education classroom. 
Therefore the research questions for this study are:

1.	 Does the sequencing of content knowledge and 
simulation modeling have an effect on the 	
students’ content knowledge achievement?

2.	 Does the sequencing of content knowledge and 
simulation modeling have an effect on the 	
students’ performance as measured by bridge design 
efficiency?

3.	 Does the sequencing of content knowledge and 
simulation modeling have an effect on the 	
students’ engagement in learning STEM content?

Methodology
	 The concept of this research project is to measure if a 
significant difference exists in various aspects of content 
knowledge and bridge design depending on the sequence 
in which the material and virtual modeling are presented 
to the student. Therefore, students in separate groups were 
exposed to structures content and virtual bridge design in 
a different sequence. The following sections describe the 
methodology of the research project, how the sequence 
of instruction was administered, and how the modeling 
program was used to collect data.

Research Participants
	 The students participating in this study are 8th grade 
students in an upper-midwestern middle school. At this 
school, all the students are required to take one quarter, or 
nine weeks, of a technology education course. Therefore, 
the classroom teacher implementing the simulation 
program in the classroom has a new student roster each 
quarter. The project involved four classes throughout the 
day and was administered during two quarters. These four 
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classes were divided into two groups, a control group and 
experimental group, with two classes each quarter being 
in each group. All the students in these classes were of 
mixed ability and there is no intentional grouping of these 
students by the school. However, due to the educational 
setting and various aspects that determine student 
scheduling, this study is classified as quasi-experimental 
and assumes non-parametric conditions. The classes 
chosen to be in the control and experimental groups were 
chosen at random among the courses available.

Control and Experimental Group
	 Both the control and experimental groups took a pre-
test at the beginning of the study. The difference between 
the control and experimental groups was the sequence 
in which the material and virtual content were delivered. 
After the pre-test, all the students in both groups were 
given login information for the Whitebox Learning 
Structures 2.0 platform. A description of the platform is 
provided in the next section. The control group proceeded 
through research, content, and modeling applications 
in the sequence just as the program is designed. This 
includes reading background information, learning about 
the details of bridge design while completing built-in 
formative assessments, and modeling and testing truss 
designs. The experimental group began the structures 
application by initially skipping the research, content, and 
formative assessments and began working directly with 
the tutorial to design the truss. Each student in this group 
was given a hard copy of the bridge building tutorial. This 
is due to the structures content being embedded within 
the virtual tutorial because of the STEM-based approach 
to the modeling program. The researchers needed to 
eliminate the possibility of students gaining built-in 
content delivery before finishing the design of their 
virtual models. Therefore, a hard copy of the tutorial was 
provided so the students could design their virtual models 
without being exposed to the embedded structures 
content. Once the students in the experimental group had 
a completed truss design and tested their virtual models, 
they went back to the research portion of the application 
and proceeded through the content and formative 
assessments. Once both groups finished the content and 
virtual models, the truss templates were printed and the 
physical models were constructed. Once all of the physical 
models were tested, the students in both groups took the 
post-test. A summary of the sequencing of activities for 
each group is shown in Fig. 1.

Structures Virtual Platform
	 Although there are many virtual and computer 
simulation bridge building software programs available, 
this research project used the virtual modeling program 
Structures 2.0 published by Whitebox Learning. White-
box Learning is a web-based platform that has multiple 
applications for STEM-based instruction and has several 
different types of virtual modeling components. For this 
project, the researchers used Structures 2.0, which is a 
bridge building design and simulation program focused on 
integrating content of bridge design with the application 
of virtual modeling. The program begins with an introduc-
tion of structures and gives students some background 
knowledge. This section provides basic engineering con-
cepts such as truss components, factors of safety, and other 
definitions related to general structure design. The next 
phase of the program provides a research section, allowing 
students the opportunity to gain an in-depth knowledge 
of truss design. The application gives a step-by-step les-
son on how to design trusses and how to determine what 
makes an effective truss design. Formative assessments are 
built into the research section in order for students and the 
teacher to measure their understanding of the material. 
This instructional software addresses 17 of the 20 stan-
dards specified in the Standards for Technological Literacy 
(2007) and engineering practices specified in the Next 
Generation Science Standards (2014). It is important to 

note that the readings provide the context of the problem 
and address engineering design standards as well as the 
technical knowledge that applies to designing an efficient 
bridge. Once the students complete the research section, a 
detailed tutorial shows the students how to use the func-
tions necessary to design a virtual model of a bridge. Dur-
ing the virtual design process, students can design different 
varieties of trusses. As the students design trusses, they can 
test them to see how much weight the truss can support 
before failure. Each time a student tests a truss design, the 
program records an iteration. These iterations can be within 
specifications or out of specifications based on the particu-
lar requirements predetermined by the teacher and setup 
in the teacher control center. However, the program only 
logs efficiencies for in-spec iterations. Once the student 
has finalized a truss design, the program will print out the 
template of their truss so the student will have a template 
to build a physical model. The students build two identical 
trusses that are joined together to make a bridge. Once the 
physical model is complete, the student tests the physical 
model to measure the efficiency of the bridge.

Data Collection and Analysis
	 While the students are navigating through the 
structures application, the researchers can monitor the 
students’ activity and progress through the teacher control 
center. The teacher control center measures different 
aspects of the students’ progress. In this research study, 
the virtual simulation data collected from the Structures 
2.0 application is shown below.
	 The purpose of collecting this data was to approach 
the research questions from different aspects in order to 

Control:	 Pre-test > Content > Virtual Modeling and Testing > Physical Model > Post-test
Experimental:	 Pre-test > Virtual Modeling and Testing > Content > Physical Model > Post-test

Figure 1. Sequencing for Control and Experimental Groups
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draw a conclusion as to how the students’ knowledge, 
performance, and engagement were affected by the 
different sequencing of activities. The primary statisti-
cal analysis compared the pre-/post-test results and 
the virtual model bridge efficiencies. Engagement was 
measured by formative evaluation, which included class 
progress, formative quiz grades and time on task reports. 
	 In addition to the virtual data, the efficiency of the 
physical model was also collected to measure engineered 
performance. The students also took a traditional pre- and 
post-test to determine student achievement of content 
knowledge. The pre- and post-tests consisted of 15 mul-
tiple choice items to measure the students’ understanding 
of the content in the Structures 2.0 platform. The items for 
these tests were developed by the researchers based on 
the content covered through the research portion of the 
Structures 2.0 application and reviewed by experts to 
ensure content validity. Once collected, the data was sta-
tistically analyzed using the Wilcoxon Scores (Rank Sums) 
two-sample test. This test was used due to the quasi-ex-
perimental design where non-parametric conditions were 
applied.   

Results
The statistical results for the pre and post test scores are 
shown in Table 1. 
	 The data shows the control group had higher a 
mean score on the pre-test, post-test, and the difference 
between the pre and post-test, although not at the 
significant level. Of these three, the researchers are 
primarily analyzing the difference in the gain between 
the pre and post-test. According to the statistical analysis 
there was not a significant difference in the gain in mean 
of the test scores between the control and experimental 
groups (p = .734). 
	 The statistical results for the virtual and physical 

model efficiencies, as well as the iteration data, are shown 
in Tables 2 and 3, respectively.
	 The results show the control group achieved a higher 
mean score for the first virtual model, although not 
significantly. The experimental group achieved higher 
efficiencies for both the best virtual model and the 
physical model efficiency, although not at the significant 
level.  The experimental group achieved significantly 
higher efficiencies in both and the difference between 
the best and first virtual efficiency (p = .048) and the 
difference between the best and first virtual model 
without the students with only one iteration (p = 
.006). The analysis was conducted without the students 
with only one in-spec iteration because their difference 
between the best and first efficiency would automatically 
be zero, since the first and best model would be the same. 
The researchers wanted to analyze the differences in best 
and first iterations for students that conducted more 
than one iteration, which would be a better indication 
of iterative design through application of the complete 
design process. The results show there is no significant 
difference between the control and experimental groups 
in regards to in-spec iterations, out-of-spec iterations, and 
total iterations. The statistical results for class progress, 
class grades, and time on task are shown in Table 4.
	 The results show the control group achieved 
significantly higher values for class progress (p = .001) 
and time on task (p = < .001). The mean score for class 
grades was higher for the control group, although not at 
the significant level. 

Discussion
	 The purpose of this research project was to determine 
if the sequencing of content knowledge and simulation 
modeling made a difference in a student’s gain in content 
knowledge, their ability to construct efficient virtual and 

physical models of bridges, and learning engagement. 
The first research question asked if sequencing of content 
knowledge and simulation modeling have an effect on 
the students’ content knowledge achievement. From the 
analysis, there was not a significant difference between 
the two groups in the gain in content knowledge as 
shown by the results of the pre and post tests. 
	 Traditional sequencing has the student learn the 
content knowledge before virtual modeling and therefore 
would logically provide students increased ability to 
design a more efficient virtual model. The researchers 
hypothesized that students engaged in the simulation 
first would result in the content being more meaningful 
to the student and aid in comprehension and knowledge 
application, research question 2. Although there was not 
a significant difference in the first or best virtual design 
between the groups, there was a significant difference in 
the difference in the best and first design. This indicates 
the experimental group was able to significantly improve 
their design more than the control group while using 
the simulation program. These results suggest that 
other factors may be involved when measuring student 
performance while changing the sequence of instruction. 
Although the experimental group had a significantly 
higher average for the difference in the best and first 
virtual efficiency, there was not a significant difference 
in the virtual efficiency of the first iteration. There is also 
not a significant difference in the number of iterations 
performed by the two groups. The findings of this study 
suggest that other factors are involved between the 
first iteration and the best iteration that resulted in the 
experimental group having a significantly higher gain in 
virtual efficiency. 
	 For the third research question regarding student 
engagement in instructional material, the control group 
had significantly higher averages in class progress and time 
on task, but not for class grades. By introducing the control 

Table 1.  Statistical analysis for difference in means of test scores

Item		  N	 Min	 Max	 Sum of Scores	       Mean Score	 Z	 P-value
											         
Pre-test											         
	 Control	 39	 4	 15	 1778		 45.6	 0.53	 0.600
	 Experimental	 48	 3	 15	 2051		 42.7				  
	
Post-test											         
	 Control	 39	 6	 15	 1837		 47.1	 1.23	 0.221
	 Experimental	 47	 6	 14	 1904		 40.5				  

Difference (post minus pre)											         
	 Control	 39	 -5	 8	 1736		 44.5	 0.34	 0.734
	 Experimental	 47	 -5	 6	 2005		 42.7				  
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Table 2.  Statistical analysis for visual and physical model efficiencies

Table 3.  Statistical analysis for virtual model iterations

Item	 N	 Min	 Max	 Sum of Scores	 Mean Score	 Z	 P-value
										       
First virtual model efficiency									      
	 Control	 35	 834	 5030	 1385	 39.6	 0.39	 0.700
	 Experimental	 41	 768	 4520	 1541	 37.6				 
											        
First virtual model efficiency									      
	 Control	 35	 834	 11440	 1204	 34.4	 -1.49	 0.136
	 Experimental	 41	 1280	 14400	 1722	 42.0				 
											        
Difference in virtual model efficiencies (best minus first)						   
	 Control	 35	 0	 6410	 1160	 33.1	 -1.98	 0.048*
	 Experimental	 41	 0	 9920	 1767	 43.1				 
											        
Difference in virtual model efficiencies (best minus first; minimum one in-spec iteration)
	 Control	 34	 0	 6410	 974	 28.6	 -2.75	 0.006*
	 Experimental	 36	 0	 9920	 1511	 42.0				 
				  
Physical model efficiency										      
	 Control	 37	 72	 1402	 1554	 36.4	 -1.91	 0.056
	 Experimental	 46	 56	 1377	 1932	 46.5				 

*significant at α = .05										       
				  

Item		 N	 Min	 Max	 Sum of Scores	 Mean Score	 Z	 P-value
									       
In-spec iterations								      
	 Control	 37	 0	 45	 1570	 42.4	 -0.02	 0.986
	 Experimental	 47	 0	 80	 2000	 42.6			 
	
Out-of-spec iterations								      
	 Control	 36	 0	 35	 1534	 42.6	 0.20	 0.843
	 Experimental	 47	 0	 50	 1952	 41.5			 
									       
Total iterations								      
	 Control	 39	 0	 64	 1649	 42.3	 -0.57	 0.570
	 Experimental	 48	 0	 114	 2179	 45.4			 
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group to the content first, students were significantly 
more engaged in the STEM content embedded in the 
Structures 2.0 application as shown by class progress and 
time on task. However, this did not translate into higher 
formative assessment grades during the research portion 
of the program. The significant differences for class 
progress and time on task led the researchers to conclude 
the traditional sequence of instruction resulted in higher 
student engagement. However, as stated before, this did 
not translate to significantly different results in the gain of 
the formative assessment or pre and post test scores. This 
finding suggests that researchers need to investigate the 
level of cognition measured by the formative assessments 
and pre and post tests. 
	 If the learning objective is performance as measured 
by the efficiency of the virtual model bridge, the results 
of this study show there is value in sequencing the 
instruction by allowing the students to begin the lesson 
by first engaging in the simulation modeling as evidenced 
by the significant difference for the experimental group. 
However, the theoretical concepts that inform about the 
development and diffusion of the technology may not be 
learned as evidenced in the pre-post test results. If the 
learning objective is knowledge, knowledge application, 
and engagement, the results show there is value in 
traditionally sequencing the instruction allowing students 
to first encounter the instructional material before 
moving to the simulation as shown by the significant 
difference in class progress and time on task, which has 
been researched as an indicator for student achievement 
(American Association of School Administrators, 1982; 
Bowen, 2013; Biderman, Nguyen, & Sebren, 2008; Carroll, 
1989; Prater, 1992).

Conclusion
	 There is little research on how the sequencing of 
content and simulation modeling on technology and 
engineering education classrooms affects a student’s 
content knowledge, performance, and engagement. 
This study was designed to begin looking at how these 
sequences may affect achievement, engineering design 
performance, and engagement. Many technology and 
engineering education teachers integrate simulation 
modeling in the classroom. Most of these simulations 
are sequenced after the content delivery in a traditional 
sequencing format. However, the results of this study 
show that some variables affecting student performance 
can be affected by delivering content and simulation 
modeling in a non-traditional sequence. 
	 Additional research needs to be conducted to look at 
additional factors of student learning when incorporating 
simulation modeling into a classroom project. Specifically, 
the balance of the value of content knowledge and 
performance must be determined for effective curriculum 
development, and how the learning outcomes of 
the project are aligned with state standards, national 
standards, and standards for technological literacy. Also 
notable was the difference in variance of the virtual model 
efficiencies between the control and experimental group. 
Since non-parametric measures were used, this difference 
was analyzed using Levene’s test, resulting in F=3.72 and 
P=0.0576. Although not significant, the large difference 
in variance of the performance measure may have resulted 
from students in the experimental group engaging in trial 
and error to improve their design rather than knowledge 
application. Further research is needed to determine when 
students use either knowledge application or trial and 
error, or a combination of the two methods. By studying 

these different aspects, teachers can deliver lessons 
that include simulation modeling in a more appropriate 
sequence to increase student knowledge, performance, 
and engagement in technology and engineering 
education classrooms. 
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