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Abstract
 Previous investigations into first year calculus students’ 
understandings of tangent lines have revealed common 
misconceptions arising either from students’ prior experi-
ences with the topic or from the treatment of the subject 
in the calculus classroom. This study seeks to examine in-
service secondary mathematics teachers’ conceptions of 
tangent lines to see if similar misconceptions are held by 
this group. To this end, we conducted one-on-one inter-
views with 16 secondary-certified mathematics educa-
tors in which they were asked to complete an assessment 
which had them define, identify, and construct tangent 
lines. After analyzing the results, we found that the major-
ity of the teachers that were interviewed did hold miscon-
ceptions that were similar to those misconceptions that 
are commonly held by first year calculus students.

Keywords: Mathematics Education, Tangent Lines, 
Teacher Education

1.  Introduction
 This study intends to analyze in-service secondary 
mathematics teachers’ understandings of the concept of 
a tangent line and to relate these understandings to com-
mon student misconceptions of the topic. It serves as a 
follow up to a previous investigation of first year calculus 
students’ misconceptions about tangency (Hogue and 
Scarcelli, 2021). In this former study, it was discovered 
that first year calculus students held misconceptions 
about tangent lines that are consistent with the teach-
ing of tangent lines in geometry and algebra despite the 
fact that they had never learned about tangent lines, or 
could not remember learning about them, in either of 
those courses. Examples of these types of misconceptions 
include stating that a tangent line must only touch a curve 
at a single point or that a tangent line cannot “cross over” 
a function. This phenomenon not only suggests that stu-
dents may acquire these kinds of misconceptions as a re-

sult of their education about tangent lines in geometry or 
algebra, but also that these misconceptions may arise en-
tirely within a calculus classroom. Due to the variation and 
manifestation of these misconceptions, it is imperative to 
come to a better understanding of in-service mathematics 
teachers’ knowledge about tangent lines in order to arrive 
at a better understanding of how these misconceptions 
originate. Our study seeks to investigate the following 
questions:

1. What, if any, misconceptions about tangent lines 
do secondary certified mathematics teachers 
hold?

2. If in-service secondary mathematics teachers pos-
sess misconceptions about tangent lines, are these 
misconceptions similar to those commonly found 
among undergraduates?

3. Do secondary certified mathematics teachers ex-
press a sufficient knowledge of tangent lines to 
teach this topic in a calculus setting?

2.  Theoretical Perspective
 In an analysis of mathematical misconceptions, Tall 
and Vinner’s theory of the concept image (Tall and Vinner, 
1981) provides a framework with which we can come to 
an understanding of how a students’ own ideas about a 
concept interacts with the mathematical definition of the 
concept. Tall and Vinner define the concept image as “the 
total cognitive structure that is associated with the con-
cept, which includes all mental pictures and associated 
properties and processes” (Tall and Vinner, 1981, p. 2). 
As the student encounters examples of a concept, works 
through problems involving the concept, is introduced 
to a formal or informal definition of the concept, etc., 
this concept image naturally changes to incorporate this 
new information. The concept image goes far be- yond a 
mere definition, which Tall and Vinner define as a “form of 
words used to specify the concept,” and the concept image 
may or may not contain the generally agreed upon formal 
mathematical definition of the concept.
 A student’s concept image may also contain a personal 
concept definition, a definition that is constructed by the 
student using aspects of that student’s concept image. 
This personal concept definition may contain aspects of 
the formal mathematical definition of the concept, or it 

may be entirely constructed by the student by referencing 
examples of the concept, informal definitions, personal 
experiences, etc. A student’s personal concept definition 
need not be entirely in line with their concept image. 
For example, a student may know that the definition of 
a rectangle is a quadrilateral with all its interior angles 
being right angles and they may adopt this as their own 
personal concept definition of a rectangle, but this per-
sonal concept definition can be at odds with their concept 
image of rectangles if, for example, the student does not 
consider a square to be a rectangle.
 If two portions of a student’s concept image contradict 
each other, or if a portion of a student’s concept image or 
concept definition is at odds with the formal definition of 
the concept, Tall and Vinner call this a potential conflict 
factor (Tall and Vinner, 1981). In the former situation, the 
student’s ideas about the concept are self-contradictory, 
and they may very well discover and work through this 
contradiction without outside intervention, or through the 
mediation of visual or other examples of the concept. To 
give a simple example of this, a student’s concept image 
about rectangles may contain the definition that a rect-
angle is a quadrilateral with four right angles. Yet, despite 
this, the student may not think that a square is a rectangle, 
simply because they have never seen a square referred to 
as such. In this situation, the student has all the knowl-
edge necessary to work through this contradiction on 
their own, and we can see that it would be relatively easy 
for a teacher to correct this misunderstanding. The student 
knows the definition of a rectangle, they have simply 
never applied it to the special case of a square. The latter 
situation (a portion of a student’s concept image is at odds 
with the formal definition of the concept) is more difficult. 
The student’s concept image may be internally consistent, 
with contradictions only arising when this internal sys-
tem is placed in opposition to the generally agreed upon 
mathematical theories. In such a situation, the student is 
usually unable to move past their misconceptions on their 
own, as from their own point of view their ideas contain 
no contradictions. Such misconceptions can only be over-
come through the intervention of some outside influence, 
such as a teacher, textbook, fellow classmate, and so on.
 The later situation is quite common among students 
who have misconceptions about tangent lines. For exam-
ple, if we consider a student who believes that a tangent 
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line is a line which touches a function at a single point 
with- out crossing over the function, this student can very 
easily apply this definition of tangency to mathematical 
examples without ever contradicting themselves. They 
simply accept as tangent lines those lines that fit this 
definition and reject those lines which do not fit. Pro-
ceeding in this way, it is impossible for them to contradict 
themselves at any point; contradictions can only arise if 
the student engages with the actual mathematical theory 
of tangent lines. However, engagement with the formal 
theory alone may not be enough to make the student 
aware of any contradictions. As Tall and Vinner note:
 Such factors can seriously impede the learning 
of a formal theory, for they cannot become actual cognitive 
conflict factors unless the formal concept definition devel-
ops a concept image which can then yield a cognitive con-
flict. Students having such a potential conflict factor in their 
concept image may be secure in their own interpretations of 
the notions concerned and simply regard the formal theory 
as inoperative and superfluous (Tall and Vinner, 1981, p. 
154).
 In other words, if a student comes to the realization 
that their own theories yield different and contradictory 
results to the formal mathematical theories, they may 
simply choose to ignore these formal theories. A tendency 
to ignore formal mathematical definitions has been noted 
previously among first year analysis and abstract algebra 
students at university (Edward, 1997; Edward and Ward, 
2004) (for further discussion, see Section 3.2). If such a 
situation arises, it is unlikely that any contradictions will 
be resolved without the intervention of a teacher or some 
other authority figure.
 Even if a student regards the formal theory with due 
diligence, they cannot become aware of the contradic-
tions within their concept image unless their exposure 
to the formal theory brings these contradictions to light. 
One reason that misconceptions about tangent lines are so 
common among first year calculus students may be that 
their experience with the formal theory does not properly 
address these misconceptions, as will be discussed below 
(see Section 3.2).

3.  Literature Review
 The extant literature around tangent lines reveal semi-
nal works and findings that address the mathematical 
significance and complexity around the teaching of tan-
gent lines. The literature review will focus the challenges 
of teaching tangent lines, examples and misconceptions 
that provide a meaningful lens for research, and the math-
ematical content knowledge that undergirds this signifi-
cant and often poorly-represented topic. 

3.1   The Challenges of Teaching 
       Tangent Lines
 In geometry, tangent lines are typically introduced to 

students in reference to circles, where they are usually de-
fined as lines which touch the circle at exactly one point. 
In the United States, an introduction to tangent lines in 
geometry is suggested by the Common Core Standards, 
which states that students be able to recognize that the 
radius of a circle is perpendicular to the tangent line pass-
ing through the endpoint of the radius (G-C2), and further 
suggest that students who intend to take advanced math-
ematics courses in the future (including calculus) learn 
to construct a tangent line to a circle that passes through 
some given point outside of the circle (G-C4) (National 
Governors Association Center for Best Practices & Council 
of Chief State School Officers., 2010). Students may also 
encounter tangent lines in algebra or pre-calculus, usu-
ally in reference to parabolas, but such a treatment is not 
prescribed by the Common Core standards and the topic 
is not commonly included in mainstream public textbook 
series (e.g., Larson and Boswell, 2018; Barnett, Ziegler, 
and Byleen, 2008). If tangent lines to parabolas are in-
troduced in this setting, they are typically defined as lines 
which intersect the parabola at exactly one point without 
crossing over the parabola. Leikin and Winicki-Landman 
(2000, p. 20) discuss some common properties of tangent 
lines that a student may encounter in the classroom:

1. A tangent has only one point in common with a 
curve

2. There is a point that is at an equal distance from all 
tangent lines (as is the case with a circle)

3. All the curve is on one side of the tangent line (for 
functions continuous on the real numbers, this is 
equivalent to the statement that a tangent line does 
not “cross over” the curve)

4. The slope of the tangent line - if it exists - is equal to 
the value of the derivative of the curve’s equation at 
the point of tangency.

5. A tangent is the graph of the linear approximation 
of the curve’s equation (if it has one) at the point of 
tangency.

6. A tangent is the limiting position of secant lines 
passing through the point of tangency.

 As they note, property 6 is the only property 
which gives a necessary and sufficient condition for 
a line to be tangent to a curve at some point (Lei-
kan and Winicki-Landman, 2000). By “the limiting 
position of secant lines passing through the point 
of tangency,” we mean that the secant lines passing 
through the points  and “approach” the tangent line as 
h    0 (Assuming f has a tangent line at x, see Figure 1).
 Despite the fact that the tangent line as a limiting posi-
tion of secant lines (property 6) is the only property that 
provides a necessary and sufficient definition of a tan-
gent line to a curve, student often incorrectly take some 
combination of the other properties as a personal con-
cept definition of tangency (Biza and Zachariades, 2010; 
Biza, Christou, and Zachariades, 2008; Vincent, LaRue, 
Sealey, and Engelke, 2015; Vincent, 2016; Vincent and 
Sealy, 2015; Hogue and Scarcelli, 2021). For example, in a 
previous study (Hogue and Scarcelli, 2021) the following 
personal concept definitions of tangency were observed 
among first year calculus students in university:
1. Tangent lines “just touch” the graph of a function and 

do not cross over the function. (See Figure 2). This is an 
incorrect example of tangent lines drawn by a student 
in a prior study. Note that the lines drawn by the stu-
dent in this figure were meant to pass through point a) 
(Hogue and Scarcelli, 2021)

2. Tangent lines are lines that touch the curve at only one 
point and are in direct correlation with the function’s 
first derivative at that point.

3. Tangent lines intersect the function at only one point 
without crossing over the function and must be at a 
location on the graph where the derivative is 0.

4 Tangent lines are lines that touch and are parallel to the 
function but do not cross over it.

5. Tangent lines are lines that intersect the function with-
out crossing over the function at the point of tangency.

6. Tangent lines represent the rate of change of the slope 
of a function, cannot cross over the function, and must 
intersect the function at only a single point.

 Here, we can see that students may apply Leikin and 
Winicki-Landman’s properties 1, 3, and 5 in some combi-
nation to construct a personal concept definition of a tan-

Figure 1:   Approximation of a Tangent Line by 
                Secant Lines

Figure 2.  “Tangent Lines” Exhibiting Property 1
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gent line. We also see the use of some related properties, 
namely in the student who claimed tangent lines only ex-
ist at points where the derivative is 0 and the student who 

claimed that tangent lines cannot cross over the function 
at the point of tangency. This later claim can be thought 
of as a “localized” version of property 3 (all the curve is 
on one side of the tangent line) as if we are working with 
continuous functions (which we typically are in first year 
calculus), the statement that a tangent line does not cross 
over the curve at the point of tangency is equivalent to the 
statement that the curve lies on one side of the tangent 
line in some neighborhood around the point of tangency. 
The tendency to adopt “local” versions of Leikin and Win-
icki-Landman’s properties is discussed by Biza, Christou, 
and Zachariades (2008). They note that, in calculus, tan-
gent lines depend on the local behavior of a function, be-
ing defined as the limiting position of secant lines passing 
through some tangent point. Yet, prior to calculus, tangent 
lines are defined by global properties, for example, touch-
ing the curve at only a single point or lying entirely on one 
side of the function (See Figures 3 and 4).

3.2    Examples and Student Misconceptions
 Watson and Mason note that “the examples learners 

produce arise from a small pool of ideas that 
simply appear in response to particular tasks in 
particular situations” (2005, p. ix). This pool is 
called the example space. As we noted earlier, 
students with misconceptions about tangent 
lines may very well have a concept image that is 
internally consistent, hence it is of great impor-
tance to expose students to a wide variety of ex-
amples of tangency so that these contradictions 
with the formal theory can manifest themselves 
within the student’s concept image. However, 
in first year calculus, a large majority of tangent 
lines shown all exhibit similar properties.
   There is a tendency to overuse certain ex-
amples, such as a tangent line to a circle or 
to a parabola, in calculus textbooks (Biza and 

Zachariades, 2010; Kajander and Lovric, 2009) (For a tan-
gent line to a circle, see Figure 3; For a tangent line to a 
parabola, see Figure 5). These two examples, a tangent 

to a circle and to a parabola, can be con-
sidered “super” examples (Hershkowitz, 
1987), that is, examples that are very, 
perhaps overly so, popular. For example, 
in the latest edition of Calculus Early Tran-
scendentals (Clegg, Watson, and Stewart, 
2021), there are a total number of thirteen 
unique visual examples on tangency given 
in the lesson portion of the sections with 
tangents as a main topic (Section 2.1: 
The Tangent Line and Velocity Problems 
and Section 2.7: Derivatives and Rates of 
Change). Of these, eleven are of tangent 
lines that touch the function at exactly one 
point without crossing over the function 
(Section 2.1: Figures 1a, 2, 3, 5, 6; Section 
2.7: Figures 1, 3, 4, 7, 8, 9), and two are of 

tangent lines that touch a function at two points (Section 
2.1: Figure 1b; Section 2.7: Figure 6), although for one of 
these examples (Section 2.7: Figure 6) this intersection 
point is not actually shown since the tangent line is not 
extended far enough. No examples are given where the 
tangent line crosses over the function at the 
point of tangency, where the tangent line 
coincides with part or all of the function, or 
where the line is tangent to the function at a 
point where the derivative does not exist. Ad-
ditionally, four of these visual examples are 
explicitly parabolas (Section 2.1: Figures 2, 3, 
6; Section 2.7: Figure 7) and three appear to 
be ‘parabola like’ since they are either concave 
up everywhere or concave down everywhere 
and have the same general shape as a pa-
rabola for the portion that is drawn (Section 
2.1: Figures 5 Section 2.7: Figures 8 and 9). 
This means that, just like in the case of pa-
rabolas, a tangent line to these functions will 

Figure 3.   A Tangent Line to a Circle

Figure 4.    A Tangent Line Which Touches the Curve at Multiple 
  Points, Without “Crossing Over” 

touch the function at exactly one point without crossing 
over it. As one visual example given is of a tangent line to 
a circle (Section 2.1: Figure 1), this means that, out of 13 
total visual examples given, only 5 are neither circles nor 
‘parabola like’.
 Though all examples of a concept fit the definition 
of that concept, various examples can have certain par-
ticularities that are not common to all examples of said 
concept. Mason and Pimm (1984) have noted that stu-
dents may focus on the particularities of these examples, 
rather than focusing on how these examples fit the formal 
mathematical definition of the concept. For this reason, 
they argue that, when possible, teachers should give ex-
amples that are as general as possible so that there are no 
particularities for students to focus on. However, this is not 
possible for the concept of tangent lines. Though we can 
certainly derive a general equation of a tangent line to a 
differentiable function f at some point (such an equation is 
given by  it is entirely impossible to construct a general vi-
sual example of a tangent line. Once we draw our function 
that is supposed to have a tangent, all generality is lost. 
This problem can be overcome by providing a wide variety 
of examples of tangency with varying properties. If this is 
done, then we can limit the particularities that students 
might focus on. For example, if one example that we show 
has the tangent line that touches at exactly one point of 
the function and another example shows a tangent line 
that touches at multiple points (See Figures 3 and 4), it 
would be less likely for a student to reach the conclusion 
that all tangent lines touch a function at exactly one point.
 Accordingly, there are two issues that arise if we use 
a limited number of examples of tangency in a calculus 
class. In the first place, students who have an erroneous 
conception of what a tangent line is from their exposure to 
tangent lines in prior mathematics courses may find that 
their concept image or definition of tangency remains 
internally consistent if these examples do not properly 
challenge these false conceptions. On the other hand, stu-
dents who are still in the process of constructing a concept 
image or definition of tangency may focus on the various 

  Figure 5.   A Tangent Line to a Parabola
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particularities of the tangent lines in this limited pool of 
examples and may mistakenly take these particularities 
as properties common to all tangent lines, that is, they 
may take these particularities as defining properties of 
tangency in their personal concept definition. For exam-
ple, if a textbook uses only visual examples of tangents 
to circles or parabolas, students very well may very well 
conclude that all tangent lines share these properties. This 
may occur even if the student knows the formal defini-
tion of a tangent line in calculus. Vinner (1991) provided 
evidence that students often produce evidence from their 
concept image or concept definition rather than by con-
sulting mathematical definitions, and this under-reliance 
on definition has also been shown by Edward and Ward 
(2004) among abstract algebra students and by Edward 
(1997) among analysis students. Additionally, this has 
been demonstrated by a previous study on the topic of 
tangent lines which found that students readily changed 
their personal concept definitions of tangency in response 
to various visual examples of tangent lines, even when 
they could not come up with a formal mathematical rea-
son for doing so (Hogue and Scarcelli, 2021).
 Everything that has been discussed up to this point 
places a huge emphasis on the teacher to come up with a 
variety of examples of tangent lines in order to help pre-
vent misconceptions among the students. It may be the 
case that the teacher will have to develop these examples 
on their own, or at least without the assistance of a text-
book, owing to the lack of a wide variety of examples in 
many textbooks that we noted previously, which means 
that it is imperative that the teacher has a solid under-
standing of tangent lines.

3.3    Mathematical Content Knowledge
 When teaching any mathematical content, it is neces-
sary to have a certain minimum understanding or pre-
requisite knowledge of that content in order to ensure 
that the information being delivered is accurate. It is of 
particular interest to our study to investigate whether or 
not secondary certified math teachers have that neces-
sary knowledge needed in order to teach tangent lines. 
It is then a question of whether these teachers have 
sufficient mathematical knowledge for teaching (MKT) 
(Bass, 2005). Bass defines MKT as ”the mathematical 
knowledge, skills, habits of mind, and sensibilities that 
are entailed by the actual work of teaching,” and further 
divides MKT into four subcategories: (1) common math-
ematical knowledge (expected to be known by any well-
educated adult), (2) specialized mathematical knowledge 
(mathematical knowledge that is unique to the teaching 
discipline); (3) Knowledge of mathematics and students; 
and (4) Knowledge of mathematics and teaching (Bass, 
2005; Bass and Ball, 2004). In this work, we are principally 
concerned with the first subcategory; we want to know 
whether secondary teachers understand the topic on a 

basic, mathematical level.
 It may be the case that secondary mathematics teach-
ers in the United States are less prepared upon earn-
ing their certifications than teachers in other developed 
countries. In their investigation of middle school math 
teacher preparation, Schmidt, Burroughs, and Cogan 
(2013) establish “world-class standards” for mathematics 
teacher education programs by selecting courses taken by 
at least 80% of future teachers within at least 90% of the 
top performing teacher education programs (39 programs 
in total: one in Poland, 15 in Russia, 17 in Taiwan, and six 
in the United States). The set of nine core courses identi-
fied by this method included six university mathematics 
courses: beginning calculus, calculus, multivariate cal-
culus, linear algebra, differential equations, and prob-
ability; two math education courses: math instruction 
and observing/analyzing math teaching; and one school 
mathematics course: functions/equations (Schmidt et al., 
2013). They then say that teachers meet the world-class 
preparation bench- mark if they have taken at least 8 of 
these 9 courses. The results are quite bleak for US middle 
school preparation programs; only 31% of future teachers 
surveyed met this benchmark, while 95% or more met 
this benchmark in both Russia and Taiwan.
 The positive correlation between a teacher’s mathe-
matical content knowledge and student achievement has 
been well documented (Clotfelter et al., 2010; Grouws and 
Schultz, 1996; Harbison and Hanushek, 1992; Tchoshanov, 
2011; Thompson, 1992). Yet, many secondary teachers 
seem to be severely lacking in their content knowledge of 
calculus. Various studies have shown that a large number 
of secondary certified teachers lack a solid conceptual 
understanding of the subject (Huillet, 2005; Masteroides 
and Zachariades, 2004; Toh, 2009). Most studies limited 
themselves to examining teacher knowledge of differ-
entiation, continuity, and integration; few studies have 
investigated in-service teachers’ conceptions of tangency. 
Murrillo and Vivier (2013) showed that teachers can ex-
hibit similar misconceptions as first year calculus students 
on the concept of tangency, but their investigation was 
limited in scale (five teachers) and included many ques-
tions that go beyond the knowledge taught in a first-year 
calculus course (for example, identifying tangent lines to 
parametric curves). Here, we intend to determine whether 

teachers will exhibit the same misconceptions when deal-
ing primarily with standard curves appearing in most 
first-year calculus courses.
 Other studies have shown misconceptions among 
certified teachers in other branches of mathematics. One 
such study, conducted with primary level pre-service 
teachers in Scotland, showed that a majority (80%) these 
prospective teachers were unable to accurately identify 
parallelograms from a group of quadrilaterals (Fujita and 
Jones, 2006), and another study, conducted with primary 
level pre-service teachers in Turkey, showed that only 
51% of teachers interviewed were able to accurately iden-
tify parallelograms from a group of quadrilaterals and only 
49% were able to accurately identify rhombi from a group 
of quadrilaterals (Erdogan and Dur, 2014). This lack of 
understanding of the differences between quadrilaterals, 
parallelograms, and rhombi among primary teachers is 
mirrored by a general lack of understanding among Turk-
ish students at the secondary level (Aktas & Cansiz-Aktas, 
2012; Biber et. al., 2019; Cansiz-Aktas, 2016), which sug-
gests that this lack of understanding among teachers may 
be impacting student understanding in the long term.

4. Methods
 We conducted our study with 16 secondary-certified 
mathematics educators who are currently teaching math-
ematics at the secondary level in either a public or charter 
school. A purposeful sample, as outlined by Patton (2002) 
and Suri (2011), was used to provide meaningful perspec-
tive and texture related to student understandings of tan-
gent lines. We recorded the teachers’ verbal and written 
responses to an assessment comprised of a series of ques-
tions on tangent lines in a face to face, semi-structured 
interview (Galleta, 2013) (see Appendix A). After these 
interviews, a thematic analysis was conducted on the 
teachers’ responses to identify common patterns among 
the misconceptions exhibited by the teachers (Busi and 
Jacobbe, 2014). In total, five main themes were identified, 
which are discussed in section 5.3.
 The participating teachers earned degrees and attend-
ed teacher training pro- grams at a wide variety of public 
and private institutions in the United States. All teachers 
who took part in this interview received their secondary 
teaching certification from the same state and had all 

Table 1.     Demonstration of Leikin and Winicki-Landman’s properties
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been teaching in that state at the time that the interviews 
were conducted.
 The assessment was designed to draw out any mis-
conceptions the teachers might have about tangent lines, 
particularly those misconceptions that are related to Leikin 
and Winicki-Landman’s properties. The first question used 
to allow teachers to demonstrate their current under-
standing of tangent lines (before encountering the graph-
ical questions). This provided a baseline for comparison to 
see whether the ideas held by the teachers were changing 
throughout the interview. This introductory question was 
followed by a series of graphical questions, and finally 
three concluding written response questions to finalize 
the teachers’ ideas about tangent lines.
 The graphical questions in the assessment primar-
ily focused on uncovering teacher misconceptions arising 
from Leikin and Winicki-Landman’s properties 1 (“a tan-
gent has only one point in common with the curve”), 3 

(“all of the curve is on one side of the tangent line”), and 
4 (“the slope of the tangent line is equal to the derivative 
of the curve’s equation at the point of tangency”) (Leikin 
and Winicki-Landman, 2000, p. 20). Questions 2.1 to 2.6 
asked teachers to state whether a given line is a tangent 
line, questions 3.1 to 3.3 asked teachers to draw a tangent 
line to a given point on a function, and question 4 asked 
teachers to state whether a given line is tangent. Table 1 
below outlines which of Leikin and Winicki-Landman’s 
properties are exhibited by the lines given in each graphi-
cal question (see Figure 6) (Hogue and Scarcelli, 2021). 
For questions 3.1-3.3, the students were asked to draw 
the tangent line, so the properties given are for the cor-
rect tangent. As property 6 is the defining property of the 
tangent line, the given line is a tangent if and only if it 
fulfills property 6. Thus, this property is not checked for 
the incorrect tangents given in 2.1, 2.3, and 2.4. The graph 
given in question 6 has no tangent, so none of the boxes 

are checked. Property 2 has been excluded as it was not of 
much interest to our study.

4.1   Participants
 The vast majority of participants (14/16) either had a 
masters degree in education, or, in the case of Teacher D, 
were currently earning such a degree. The most common 
educational background of the teachers interviewed was 
a Bachelor’s degree in Mathematics Education with a fur-
ther masters degree in education. Seven out of the sixteen 
teachers that were interviewed had such a background (A, 
C, E, F, G, M, and O) with an additional teacher (Teacher D) 
who had and undergraduate degree in mathematics edu-
cation and was currently earning a master’s degree in edu-
cation. The educational backgrounds of the participants in 
our study are outlined below (see Table 2):
 Three of the interviewed teachers (I, J, and P) had an 
undergraduate degree in mathematics with a master’s in 
education and another three teachers (B, H, and L) had an 
unrelated undergraduate degree with a master’s in educa-
tion. Finally, one teacher, teacher K, had both a mathemat-
ics and mathematics education undergraduate degree, 
but no graduate degree, and another teacher, teacher N, 
had only an undergraduate degree in mathematics educa-
tion. We note here that in the state where this study was 
conducted, teachers can obtain a secondary mathemat-
ics certification by passing the ETS Praxis II Mathematics 
Content Knowledge Exam, provided they already hold a 
teaching certification in some other discipline.
 As previously discussed, tangent lines are dealt with in 
a variety of ways when studying different mathematical 
subjects at the secondary level. Thus, the subjects that 
teachers are most familiar with may have an impact on 
their understandings of tangent lines. The table below 
outlines the teaching experiences of the participating 
teachers (see Table 3). A checkmark (√) denotes that the 
teacher has taught this subject within the past five years. 
A circle (°) denotes that the teacher has taught this sub-
ject, but not within the past five years.

5.   Findings
 At the outset of each interview with our teachers, we 
sought to first determine their original conceptions of tan-
gent lines with a few introductory questions. The tables 
below (Tables 4 and 5) gives a brief summary of the 
teachers’ initial conceptions of tangent lines. These initial 
conceptions are based on the teachers’ initial definitions of 
tangency as well as their responses to the first few graphi-
cal questions.

5.1   Teaching Experience and Initial 
     Conceptions of Tangency
 The majority of the teachers interviewed (Teachers A, 
B, C, E, F, G, H, K, L, M) had improper geometric or alge-
braic conceptions of tangency. Of these 10 teachers, only 

Table 2.   Educational Backgrounds of Participants

Table 3.   Subjects Previously Taught
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two, Teachers H and L, noted any relation of the derivative 
or slope to the concept of the tangent line at the outset of 
the interview. Of the 8 teachers who did not note any rela-
tion between the derivative or slope and a tangent line, six 
noted that they had taught Geometry in the past 5 years 
(Teachers A, C, E, F, G, and K). Five of these six teachers, 
with teacher K as the exception, had taught the concept of 
tangent lines in their geometry class. Four other teachers 
who made no mention of derivative or “slope” noted that 
they had taught Algebra II in the past 5 years (Teachers B, 
C, F, and M) with one additional teacher, teacher A, having 
taught this class at some point and another noting that 
they had taught Trigonometry/Pre-Calculus in the past 
five years (Teacher F). None of the teachers who taught 
either Algebra II or Trigonometry/Pre-Calculus had taught 
about tangent lines in those courses.
 The teachers’ initial statements about tangent lines are 
summarized in Figure 10. Inexperienced teachers seemed 
more familiar with the definition of a tangent line that re-
lies solely on the slope or derivative. Of the five teachers 
who had been teaching for five years or less (Teachers I, 
J, K, M, P), three of them mentioned derivative or slope in 
their initial definition of tangency (I, J, and P) and none of 
these three gave any geometric or algebraic conditions for 
tangency. For teachers who had been teaching for more 
than five years, five (Teachers D, H, L, N, and O) of the 
eleven mentioned derivative or slope in their definition, 
but only 3 of these (D, N, and O) did not give any geo-
metric or algebraic conceptions of tangency. Two of these 
three teachers noted that they had taught calculus in the 
past five years, meaning that out of the 9 non-calculus 
teachers who had been teaching for more than 5 years, 
only one, teacher N, gave a definition of tangency that 
was entirely reliant on derivative or slope.
 When tangent lines are considered in geometry, they 

are typically defined as lines which only intersect a circle 
at a single point. For our 9 teachers who had taught Ge-
ometry in the past 5 years, 6 had defined a tangent either 
as a line that intersects a function at a single point, or as a 
line which intersects a function at a single point without 
crossing over the function (these definitions are equiva-
lent when considering tangent lines to circles). In addi-
tion, none of these six teachers noted any relation of
the tangent line to the slope or derivative of a function. If 
we leave out the teachers who had also taught calculus, 
that leaves six out of seven geometry teachers who de-
fined a tangent line in a way that is entirely in line with 
the concept of a tangent line to a circle. This lends some 
credence to the idea that students may develop improper 
ideas about tangent lines from their prior experience in 
other mathematics courses.

5.2     Educational Experience and Initial 
       Conceptions of Tangency
 It is important to discuss the various paths that a 
teacher in the United States can take in order to become a 
secondary certified mathematics teacher, as some readers 
may be confused as to why some of these teachers have 
a master’s degree in education without an undergraduate 
degree in education, some have no math degree at all, and 
one (Teacher N) has no education degree. For the state in 
which all of the teachers in this study taught, which lies in 
the mid-Atlantic region of the United States, there are a 
few ways in which a teacher can become certified to teach 
a subject at the secondary level (grades 6-12). The most 
basic certification pathway is to earn ones certification in 
tandem with a bachelor’s degree in education through 
an approved institution. Teachers who have a bachelor’s 
degree in a related field can earn a certification to teach 

mathematics at the secondary level by earning a master’s 
degree or a post-baccalaureate certification through an 
approved institution. It is worth noting that a master’s 
degree program in education typically contains no subject 
area content, so that, usually, someone earning such a de-
gree in curriculum and instruction will not have to take 
any mathematics courses as part of their degree. In addi-
tion, teachers who are already certified to teach a subject 
at the secondary level can earn additional certifications for 
other subjects at that level by passing the corresponding 
Praxis content knowledge test for that subject.
 Those with a mathematics undergraduate degree 
generally gave better initial definition than those without 
such a degree. Of the four teachers (I, J, K, and P) with 
an undergraduate mathematics degree, three (I, J, and 
P) gave a definition that relied solely on slope or deriva-
tive. For those teachers without a bachelor’s degree in 
mathematics, only Five out of twelve (D, H, L, N, and O) 
mentioned slope in their initial definition, with only three 
of these (D, N, and O) giving a definition that relied solely 
on slope. For the 9 teachers whose only undergraduate 
degree was in mathematics education (Teachers A, C, D, E, 
F, G, M, N, and O), 6 gave no mention of slope or derivative 
in their initial definition (A, C, E, F, G, and M).

5.3    Misconceptions Demonstrated in the 
            Interview Process
 The teachers that we interviewed exhibited a wide va-
riety of misconceptions on the topic of tangency, though 
there were a few common themes which repeatedly arose 
throughout the interview process. Several of these themes 
were related to Leikin and Winicki-Landman’s properties 
which were mentioned earlier, such as teachers believing 
that a tangent line only has one point in common with 
the curve, thinking that a tangent line cannot “cross over” a 
function, or noting some connection between the tangent 
line and the derivative. These erroneous conceptions lead 
some teachers to believe that a function could have mul-
tiple tangent lines at a single point, which is discussed in 
more detail below. Finally, another common theme which 
arose among the teachers was the idea that a linear func-
tion should not have a tangent line, whether their defini-
tions allowed for this or not.

5.3.1   A Tangent Line Has Only One Point in  
           Common with a Curve
 At the outset of the interviews, nine teachers (teachers 
A, B, C, E, F, G, K, L, and M) had believed that a tangent line 
should only intersect a function at a single point. Yet, the 
teachers’ applications of this principle varied, with some 
permitting exceptions to this rule for certain functions 
(namely, trigonometric functions). Additionally, through-
out the course of the interviews, some teachers (A, C, and 
E) would drop this property as a necessary condition for 
tangency while others (E, G, and M) adopted a local ver-
sion of this property for their personal concept definitions 

Table 4.   Teachers’ Initial Conceptions
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Table 5: Teachers’ Initial Definitions and Observations

of tangency. Only two of the teachers, teachers B and L, 
held quite firmly to the principle that tangent lines should 
only inter- sect a function at a single point, neither elimi-
nating this property from their personal concept defini-
tions of tangency during the interviews nor allowing for 
any exceptions to this rule. Teacher F, on the other hand, 
kept this property in their personal concept definition 
throughout the interview but did allow for one key excep-
tion. We will now examine some of the changes related 
to this property that the teachers made to their personal 
concept definitions during the course of the interviews.
 The majority of teachers who changed their personal 
concept definitions with respect to this property in some 
way did so in response to a tangent line given at a mini-
mal point on a sine curve (question 2.5). However, those 
teachers who did change their definitions in response to 
this question still did not permit tangent lines to intersect 
at more than one point without condition. The closest was 
teacher A, who changed their definition after encounter-
ing question 2.5 by stating that tangent lines could inter-
sect a function more than once. Despite this, teacher A still 
rejected a tangent line to a linear function (which coin-
cides with the function; question 2.6) since the tangent 
would intersect the function infinitely many times. When 
we pointed out that this would also be true for the tangent 
at a minimal point of a sine curve, they still believed that 
this would be a tangent but continued to reject a tangent 
line to a linear function.
 After encountering question 2.5, teachers E, G, and 
M decided that a function could intersect a function at 
multiple points provided that the tangent line only inter-
sect the function at one point locally around the point of 
tangency. They worded this property in various ways, with 
E and M stating that the domain should be restricted so 
that the tangent line only intersects at a single point (see 
Figure 6), and teacher G explicitly using the word “locally” 
in their statement of the property, but all gave equivalent 
characterizations. In Figure 11, the vertical lines drawn by 
the teacher represent the restriction of the domain, within 
which the tangent line only intersects the function at a 
single point.
 Teacher F, on the other hand, continued to reject that 
a tangent line could intersect a function at multiple points 
despite the fact that they accepted the tangent line to a 
minimal point of a sine curve. For this teacher, sine curves 
were a special type of curve for which the general rules of 
tangency did not apply. Thus, a tangent line to a sine curve 
could intersect that curve multiple times, but this was not 
true for other functions.
 Teacher C had initially stated that a tangent line could 
only intersect the function at one point, but eventually 
dropped this condition when they adopted the condition 
that a tangent line should be perpendicular to the x or y axis. 
It is unclear what prompted this change, the teacher simply 
stated that they had remembered that this was the case.
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5.3.2   A Tangent Line Does Not “Cross Over” 
the Function
 Initially, nine teachers (A, B, C, E, F, G, H, L, and M) 
had believed that a tangent line could not “cross over” the 
function that the line is tangent to. Seven teachers (A, B, 
E, F, G, L, and M) still held this believe at the end of the 
interviews, while teachers C and H eventually would drop 
this condition from their personal concept definitions.
 For those seven teachers who held firm in their belief 
that a tangent line could not cross over a function, they 
applied this property consistently throughout the inter-
view without contradicting themselves. Thus, any tan-
gent line that crossed over a function was rejected, and 
when asked to draw tangent lines they never drew one 
that crossed over a function and stated that the tangent 
line did not exist if it was not possible to draw a line that 

would not cross over the function (for example, questions 
3.2 and 3.3). One exception to this was teacher B’s use of 
‘tangent rays’. In response to question 3.2, teacher B drew 
a ‘tangent ray’ and stated that this could be a tangent line 
since it did not cross over the curve (See Figure 7).
 Teacher C, as mentioned previously, changed their 
personal concept definition during the course of the inter-
view, deciding that tangent lines should be perpendicular 
to the x or y axis. In doing this, they dropped to prior con-
ditions given, namely that tangent lines could only inter-
sect a function once and that tangent lines could not cross 
over a function. After this change, they had no issues with 
accepting tangent lines that cross over a function.
 Teacher H had initially stated that tangent lines should 
lie “infinitely close” to a func-
tion without touching the 
function. Thus, a tangent line 
cannot cross over a function, 
as, in order to do that, it would 
have to touch the function. 
They would reconsider this po-
sition later on when encoun-
tering question 3.3 (where 
they were asked to draw a tan-
gent line to a non-minimal or 
maximal point on a sine curve) 
and finally decided that a tan-
gent line could actually cross a 
function. They had no specific 
reasoning for this change, but 
stated that some information 
about tangent lines was “com-
ing back” to them.

5.3.3   Tangent Lines and Calculus Properties
 This section will primarily deal with the teachers who 
related tangent lines in some way to the derivative, slope, 
or rates of change, but teachers who related tangent lines 
to other calculus properties are also included. In total half 
of the teachers (D, H, I, J, L, N, O, and P) made some rela-
tion between tangent lines and the derivative or slope of a 
function at both the start and end of the interview, while 
two teachers (E and K) did not initially include the deriva-
tive or slope of a function in their personal concept defini-
tions but did add them in by the end of the interviews.
 Despite the large number of teachers who mentioned 
slope or the derivative in their initial concept definitions, 
few did so entirely correctly. Only three teachers (D, J, and 
O) gave what could be considered as a correct definition 
of tangency for continuous functions (that the slope of the 
tangent line is equal to the derivative of a function at the 
point of tangency). These teachers responded correctly to 
all questions in the protocol, with the exception question 
3.2, which asked the teachers to draw a tangent line at 
a point where the derivative of the function is undefined 
(in this case, the tangent should be vertical). Teacher D re-
jected a tangent line at this point, correctly stating that the 
derivative would be undefined. Teacher J noted that the 
derivative would not be defined at this point, but noted 
that the rate of change of the function would “approach 
infinity” at that point, leading them to conclude that the 
tangent should be vertical. Finally, teacher O noted that 
the secant lines of the function approach a vertical line at 
that point, hence the tangent line should be vertical. We 
should note that teacher O was the only teacher to apply 
the definition of the tangent line as the limiting position of 
secant lines at any point throughout the whole interview 
process.
 Other teachers related the tangent line to the deriva-
tive, slope, or rate of change of a function with varying 

  Figure 6.    Restriction of Domain by Teacher E

  
Figure 7.  An Example of Teacher B’s “Tangent Rays”

  
Figure 8.   Teacher H’s “Tangent Lines” to an Absolute Value Graph
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degrees of success. Teacher E had initially made no con-
nection between tangent lines and the derivative or slope, 
but added this to their definition in response to question 
2.3 (tangent line to a minimal point on an absolute value 
function). They noted that the given line was not “going 
along with the function” and stated that the slope of the 
tangent line and the slope of the function should me “sim-
ilar”. In the end, they added to their final personal concept 
definition the statement that the “slope of the tangent 
line would match whether the function is increasing or 
decreasing [sic].”
 Teacher H noted in both their initial and final defini-
tions of tangency that the tangent line has a slope that 
“matches” the slope of a function. As noted previously, 
however, they also required that a tangent line lie “infi-
nitely close” to a function, a definition that may be related 
to the limit process. Although they eventually altered this 
property to allow tangent lines to cross over functions, 
they did still apply it in response to question 4, which asks 
whether the vertical asymptote to                  is a tan-
gent line. They argued that, since this line lies “infinitely 
close” to the function, it should be a tangent line. Teacher 
H seemed to struggle with the tangent line to the edge 
point of an absolute value graph (2.3). They eventually 
decided that this function would have tangent lines at 
that point, but that they should be the continuation of the 
two linear components of the graph (See Figure 8).
 Teacher I initially stated that the tangent line “repre-
sents the slope of a function” at the “connecting point”. 
They revealed in response to question 2.3 (the tangent 
line to the minimal point of |x|) that by slope, they mean 
the derivative of the function. However, they incorrectly 
concluded that the derivative of the function f (x) = |x| at 
x = 0 is equal to 0, allowing them to incorrectly accept the 
given line as a tangent line. In their final personal concept 
definition of tangency, teacher I noted that the tangent 
line tells us the slope at the point of tangency.
 Teacher K initially made no mention of the slope or the 
derivative of a function in their definition of tangency, but 
changed this definition in response to question 2.3. Teach-
er K stated that they were bothered by the “pointiness” of 
the function. It was here that the teacher recalled that the 
tangent line had something to do with the first deriva-
tive of the function. They argued that since the function 
would not have a first derivative at the intersection point, 
the tangent line should not exist. They further reasoned 
that a tangent line should tell us about the zeroes, or x-
intercepts of a function. Because of this, they argued that 
the graph in question 2.1 (which gives a tangent line to a 
parabola) should have exactly two tangent lines, and that 
these tangent lines should tell us the zeroes of the original 
function. Teacher K was unable to reach a consensus about 
the nature of derivatives during the course of the inter-
view. On some questions, Teacher K seemed to treat the 
derivative as a rate of change (for example, in response to 
question 3.2 they argued that the tangent line would have 

to be vertical, but stated that a vertical rate of change was 
not possible), yet on others they argued that the deriva-
tives were actually just the zeroes of the original function. 
In their final definition, they stated that the tangent line is 
the first derivative.
 Teacher L stated that the slope of the tangent line 
should be equal to the derivative of the function at both 
the start and end of the interview, but also added that 
a tangent line should only intersect a function once and 
should not cross over the function. This caused them to 
reject the tangent line in question 2.2 (which gives the 
correct tangent line to the function Slippery Rock at the 
origin) as even though they recognized that the derivative 
was 0 at that point, the tangent line would cross over the 
function.
 Teacher N initially stated that “Tangent lines tell the 
history of smooth curve functions. Tangent lines reveal 
slope. Changes in slope predict future results.” They also 
claimed that tangent lines had some relation to the de-
rivative and that the second derivative also plays a role, 
but they were not able to say what the exact relation 
was. Their ideas about the topic were made more clear 
in their response to question 2.3 (graph of absolute value 
function) in which they correctly stated that the function 
would not have a tangent line at the given point as the 
slopes approaching from the left and right are not equal. 
Though Teacher N noted that there was some relationship 
between a tangent line and the derivative, they were un-
able to clearly state what this relationship is. They did note 
that one could find the formula of some tangent lines by 
using point- slope form, setting the slope equal to the de-
rivative, but they also stated that this was not true in all 
cases. An example of this can be seen in their response to 
question 4, which asks the teachers whether the vertical 
asymptote to the graph of                   is a tangent line. 
They argued that, since this line lies “infinitely close” to the 
function, it should be a tangent line. The teacher respond-
ed that it is, since it “describes the split” of the function. 
They did, however, drop their claim that the tangent line 
is related to the second derivative, noting that the second 
derivative describes concavity.
 Teacher P began by stating that the tangent line rep-
resents the “action” of a function (i.e. whether it is increas-
ing, decreasing, or constant) and further stated that a tan-
gent line should “follow” the function. When asked what 
they meant by “follow”, they replied that the behavior of 
the tangent line should be “similar” to the behavior of the 
function at the point of tangency. Though they never re-
ferred to this “behavior” as a slope or a derivative, most 
of their responses seemed to be in line with the concept 
of a tangent line as a line that matches the derivative of 
a function. Some notable exceptions included question 
2.3 (tangent to an absolute value graph) where Teacher 
P claimed that the given line was a “good representation 
of what is happening to the function at the given point” 
and question 2.6 (tangent to a liner function) where they 

claimed that a tangent line could not be the function itself. 
Teacher P defined tangent lines as “a representation of the 
behavior of a function at a given point” at the conclusion 
of the study.
 Teacher C, who did not make any relation between 
the tangent line and the slope or derivative of the function 
at any point during the interview, did relate tangent lines 
to another calculus topic. As previously noted, teacher C 
required that tangent lines be perpendicular to the x or y 
axis, and further stated that a tangent line would repre-
sent the “area under the curve up to that point”. They did 
not, however, include this property in their final definition 
of tangency, although they still believed it to be true at 
the conclusion of the interview. This would appear to be a 
confusion between the topics of differentiation and inte-
gration on the part of the teacher.

5.3.4    Can There Be Multiple Tangent Lines 
at a Single Point?
 One question that was not directly tested by any of our 
graphical questions, but which was still of interest to our 
study, was the questions as to whether a single point on a 
function could have multiple tangent lines. We asked this 
question directly at the end of our protocol, after teachers 
had given their final definition of tangency. In total, four 
teachers (teachers A, C, G, and M) allowed for multiple 
tangents at a single point on a function. For the most part, 

 Figure 9:   . Multiple Tangent Lines Drawn by
                 Teacher M

the teachers’ responses to these questions can be inferred 
from their final definitions of tangency, so that teachers 
who defined tangents in relation to the derivative/slope 
did not allow multiple tangents to a single point because 
of the uniqueness of the derivative/slope and teachers 
who did not mention the derivative or slope did allow for 
multiple tangent lines at a single point (See Figure 9). No-
table exceptions are teachers B and F; neither mentioned 
derivative or slope in their definitions of tangency, but 
both did not allow for multiple tangent lines at a single 
point on a function.
 Teacher B asserted that it was not possible to have 
multiple tangent lines at a single point as the tangent line 
would have to be “perpendicular” to the function. We noted 
previously that what Teacher B meant by “perpendicular” 
was not entirely clear as many of their responses included 
tangent lines that were not perpendicular to the given 
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function. We asked Teacher B to clarify their meaning, but 
were still unable to determine what they meant by this. 
Teacher F defined a tangent line as a line that intersects a 
“curved” function at only one point without crossing over 
that function. Teacher F stated that by “curved,” they meant 
a function that is non-linear, and they did not allow for 
tangent lines to functions that were not “curved.” They 
stated that for a point on a curved graph, there could be 
at most one line that intersects this point and no other 
point on the function without crossing over the function. 
Though, using Teacher F’s definition of “curved,” this state-
ment is not correct (we could have a non-linear function 
that has a cusp point) (see Figure 10).

      

5.3.5 Tangent Lines to Linear Func-
tions 
As can be seen in some of the examples given above, there 
was a tendency among the teachers to reject tangent 
lines to linear functions. In total, 12 of the teachers that 
we interviewed (A, B, E, F, G, H, I, K, L, M, N, and P) did 
not allow for tangent lines to linear functions. For some 
teachers, this was perfectly in line with their definition of 
tangency, as was the case for teachers A, B, E, F, G, K, L, 
and M, but for others (H, I, N, and P) linear functions rep-
resented special cases which should be treated differently 
than other functions.
 For Teacher H, a tangent line should be “infinitely 

close” to a function without touching the function (al-
though they did make some exceptions to this rule) and 
should “match the slope” of the function. Initially, Teacher 
H rejected a tangent line to a linear function because they 
thought that any such line would have to touch the func-
tion, which they did not permit in general. However, they 
began to consider that it might be possible to place a line 
similar to the original function infinitely close to it, and 
that this line may be a tangent. They eventually rejected 
this, because they claimed that this line would give no 
new information about the original function. Teacher N 
made a similar claim that the tangent line would provide 
no additional information about the function, and thus 
should not exist. Teacher I, on the other hand, argued that 
if a tangent line to a linear function existed, then it would 
simply be the original linear function and would thus be 
tangent to the function at multiple points, which they did 
not permit. Finally, Teacher P rejected a tangent line to a 
linear function simply because such a line would have to 
be identical to the function. Teacher P stated that they be-
lieved that a tangent line could coincide with a portion of 
a function, but not with the entire function, although they 
did not have any reasoning for this claim, simply citing 
prior experience.

5.4   Summary of Findings
 The following section shall detail summary findings 
from the study.
 As Tables 6 and 7 show, many teachers in our study 
still held improper ideas about tangent lines at the con-
clusion of the interviews. Note that some of the properties 
mentioned by the teachers during the course of the in-
terviews were not included in their final definitions, even 
if they still believed some of these properties to be true. 
Half of the teachers held improper geometric or algebraic 
conceptions of tangency, either stating that a tangent line 
could only touch a function at a single point or stating that 
a tangent line could not cross over the function. In addi-
tion, six out of the sixteen teachers made no reference to 
the derivative in their final definitions of tangency. How-
ever, there was still a general improvement in the concep-
tions of our teachers, with the total number of teachers 
with improper geometric or algebraic conceptions of tan-
gency being reduced by two and with the total number 
of teachers mentioning derivative or slope in their defini-
tion increasing by two. Still, only seven teachers gave a 
definition of tangency that was solely reliant on derivative 
or slope, and even among these teachers some miscon-
ceptions were observed. For example, Teacher N did not 
accept tangents to straight lines and considered some 
asymptotes as tangent lines. Only three teachers, Teacher 
D, Teacher J, and Teacher O, correctly applied the calculus 
definition of a tangent line to a differentiable function 
throughout the entire protocol without exhibiting any 

 
Figure 10: Two “Tangent Lines” at a Cusp Point

Table 6: Teachers’ Final Conceptions
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major misconcep- tions.

6.   Conclusions and Discussion
        Our study reveals that many secondary certified 
mathematics teachers’ conceptions of tangency contain 
similar misconceptions about the topic to those that 

are commonly found among first year calculus students 
(Hogue and Scarcelli, 2021). The vast majority of teachers 
that we interviewed held improper ideas about tangent 
lines and gave personal concept definitions that were 
not in line with the formal definition of tangency, with 

only three out of sixteen teachers (teachers D, J, and O) 
responding to all questions without exhibiting any major 
misconceptions. This has some serious implications for 
the preparation of mathematics teachers. Though it is true 
that the teachers who had taught, or are currently teach-
ing calculus in our study (Teachers D and O) performed 
well in our study, serious problems could arise if any of the 
thirteen teachers who did exhibit misconceptions should 
be required to teach this course at some point in the fu-
ture. It is, of course, not at all unlikely that such a teacher 
will end up correcting their own misconceptions through 
their preparation to teach the class, yet the problems with 
the treatment of this topic in textbooks mentioned earlier 
could cause some of these misconceptions to persist. 
      We are not attempting here to put forward an indict-
ment of America’s secondary mathematics teachers; obvi-
ously there will be certain topics that fade from a teacher’s 
memory over the years. Rather, we only intend to point 
out yet another difficulty which may arise in teaching cal-
culus on the secondary level: that many teachers simply 
are not comfortable with the content. Calculus is a difficult 
subject, and one would not expect someone to remember 
every single detail if that person does not regularly work 
with the subject.
       One concern arising from these misconceptions among 
teachers is that, should a teacher with these misconcep-
tions be asked to teach a calculus class, they may unin-
tentionally transfer these misconceptions to the students. 
absolute value graph (question 2.3) and a tangent to a 
graph at a point where the derivative is undefined (ques-
tion 3.2), so these examples might also prove useful in 
the classroom. Two teachers also incorrectly identified a 
vertical asymptote as a tangent line (question 4), hence 
it might also benefit students to provide this as a non-
example of tangency.
        Beyond the need to teach calculus, such miscon-
ceptions can also have underlying implications for fos-
tering misconceptions with underclass students. If many 
secondary certified mathematics teachers do not have 
a proper under- standing of tangent lines in calculus, 
then this lends credence to the idea that some of these 
misconceptions have their origins in the students’ prior 
mathematics experiences, especially considering the fact 
that six out of nine geometry teachers interviewed gave a 
definition of tangency that did not at all rely on the deriva-
tive of a function. It is possible, then, that these teachers 
might give students a conception of tangency that is cor-
rect in reference to circles, but not correct for future stud-
ies of tangent lines. Such a conception may stick with the 
students throughout their calculus studies. 
We noted earlier that our more inexperienced teachers 
seemed more comfortable with defining a tangent line 
solely in terms of the derivative or slope. If more time 
spent as a teacher really does have a destructive effect on 
teachers understanding of tangency, then this is likely be-
cause the calculus definition has gone unused for so long 

Table 7.    Teachers’ Final Definitions and Observations.
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that it has simply been forgotten. The fact that both calcu-
lus teachers in our study gave definitions of tangency that 
were based solely on the derivative despite the fact that 
they had been teaching for more than 5 years would then 
be explained by their continual exposure to the topic in a 
calculus setting. There is, however, an alternative explana-
tion to the performance gap between more experienced 
and less experienced teachers in that these less experi-
enced teachers were more likely to have an undergradu-
ate degree in mathematics. In all likelihood, both factors 
contribute to the performance gap to some extent. 

The problems that may arise if the teacher of a cal-
culus class holds misconceptions about tangency are 
more obvious. There is a risk that these misconceptions 
may take root with the students, and, given the lack of 
variety in visual examples of tangency shown in many 
textbooks, the student may be unable to overcome these 
misconceptions on their own (and the same goes for the 
teacher). Given the large percentage of teachers in our 
study that exhibited misconceptions about tangent lines 
(13/16, or about 80%) it seems not at all unlikely that 
there are quite a few new or even experienced calculus 
teachers that hold similar misconceptions even though 
neither of the two calculus teachers in this study had any 
serious misconceptions.
Our study may suggest that in-service mathematics 
teachers harbor significant misconceptions related to 
their understanding and application of tangency- based 
principles. This suggests that while greater efforts are es-
poused for pre-service math teachers’ engagement with 
mathematical content, the understanding of tangent 
lines may require additional emphasis in teacher prepa-
ration programs. Given the research that has been done 
on secondary teachers under- standing of other concepts 
of calculus it appears that this additional emphasis may 
need to encompass more than just tangent lines in cal-
culus (Masteroides and Zachariades, 2004; Huillet, 2005; 
Toh, 2009).

What can be done to remedy this issue lies outside 
of the scope of this paper, but the implications for the 
secondary calculus classroom make it a serious problem 
worthy of further consideration. We can, however, offer 
a few suggestions to improve student understanding of 
tangent lines in the calculus classroom. Teachers should 
employ a wide variety of examples of tangency and avoid 
overused examples of tangent lines such as a tangent line 
to a circle or a parabola to ensure that students are ex-
posed to tangent lines with a variety of properties. 

Our interviews revealed a few specific examples of 
tangency that might be particularly useful toward this 
end. Many of the teachers that we interviewed who ini-
tially stated that a tangent line could only cross a func-
tion at a single point changed their personal concept 
definitions of tangency by either removing or altering this 
requirement in response to a tangent line at a minimal 
point of a sine curve (question 2.5). This suggests that 

such an example may be effective at correcting this 
misconception in calculus students. For some teachers, 
however, this example only managed to slightly improve 
their personal concept definitions, with the teachers in-
stead adopting a local version of this property. Thus, it 
may also be beneficial to show an example of tangency 
where the tangent line coincided with the function in a 
region around the point of tangency such as a tangent 
line to a linear function, which was another example that 
caused trouble for a number of our teachers. 

Other examples of tangency that our teachers strug-
gled with include a tan- gent line to a minimal point on 
an absolute value graph (question 2.3) and a tangent 
to a graph at a point where the derivative is undefined 
(question 3.2), so these examples might also prove use-
ful in the classroom. Two teachers also incorrectly identi-
fied a vertical asymptote as a tangent line (question 4), 
hence it might also benefit students to provide this as a 
non-example of tangency.

It is not enough for teachers to simply present these 
examples as tangent lines or non-tangent lines, they 
must also explain why these examples are examples 
of tangent lines by employing the definition of tangent 
lines so that students can learn how to use that definition 
to identify and construct tangent lines on their own. Fi-
nally, teachers should explain how the definition of tan-
gency used in calculus differs from previous definitions 
that students might have learned so that students who 
have learned about tangent lines in prior mathematics 
courses can move past these old definitions. Though 
these suggestions will not improve in-service teachers 
of mathematics understandings of tangent lines, they do 
have the potential to improve future teachers of math-
ematics understandings of the subject if employed in 
pre-service teacher preparation programs.
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Appendix A

What do you know about tangent lines?

In which of the following graphs is the green line a tangent to the function at point a? Explain
your reasoning for each graph.

1

2
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3

4
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5

6
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1

2

 Draw a tangent line to the function at point a. Explain your answer (If it does not exist, explain why)
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Is the green line a tangent to the function? Why or why not?

How would you define a tangent line?

Can a function have more than one tangent line at a single point? Why or why not? If so, can you draw an example of a function which has    
more than one tangent line at one of its points?

Decide if the following statement is true or false and explain your reasoning: A tangent line can only intersect a function at a single point.


