Using the van Hiele K-12 Geometry Learning Theory to Modify Engineering Mechanics Instruction
Main Article Content
Abstract
Engineering students use spatial thinking when examining diagrams or models to study structure design. It is expected that most engineering students have solidified spatial thinking skills during K-12 schooling. However, according to what we know about geometry learning and teaching, spatial thinking probably needs to be explicitly taught within the confines of engineering-specific contexts in college. The van Hiele theory of geometry learning explains geometry understanding as a series of more and more sophisticated ways to reason geometrically. The theory is known for its use in guiding K-12 geometry instruction. This paper describes the theory and explains how one engineering mechanics professor used it to re-conceptualize and restructure his approach to teaching an engineering mechanics class. In particular, we describe his use of the van Hiele theory to move students toward success with freebody-diagrams, diagrams requiring complex spatial thinking and often a ?point of departure? for most undergraduate engineering students.
Article Details
Issue
Section
Articles
Copyright for articles published in this journal is retained by the Institute for STEM Education and Research with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution, in educational and other non-commercial settings.